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ABSTRACT 

IDENTIFICATION OF GENE REGULATORY ELEMENTS ASSOCIATED WITH 
THE MEIS FAMILY OF HOMEOBOX GENES 

 
Kyle Christopher Nelson, B.A., Appalachian State University 

M.S., Appalachian State University 

Chairperson: Ted Zerucha 

Homologs of the Meis homeobox-containing gene family (originally named for 

myeloid ecotropic leukemia virus integration site because a disruption of the first member 

of this gene family discovered was found to lead to Leukemia) have been identified in all 

animals studied.  The products of the Meis genes appear to function as cofactors, directly 

interacting with other transcription factors as well as DNA to facilitate transcriptional 

regulation.  Most notably, they appear to act as co-factors of the evolutionarily well-

conserved Hox proteins and have also been described as acting with members of other 

homeobox genes.  The vertebrate Meis homeobox-containing gene family consists of at 

least three members, and while little to nothing is known about their regulation, they are 

expressed in conserved patterns throughout the embryonic development of those 

vertebrates that have been examined.  Using comparative genomics/phylogenetic 

footprinting to search for regulatory elements associated with the Meis family of 

homeobox-containing genes, 4 highly conserved elements located downstream of the 

Meis2 gene have been identified that are very well-conserved in sequence and relative 
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position amongst the genomes of all vertebrates examined, including human, mouse, 

chicken, zebrafish and the pufferfish Takifugu rubripes.  All elements, named m2de1 

(Meis 2 Downstream Element), m2de2, m2de3, and m2de4, contain several putative 

transcription factor binding sites.  Conservation in sequence and position indicate the 

m2de1, m2de2, m2de3, and m2de4 elements play some important conserved role in 

animals with the most likely possibility being that they function as cis-regulatory 

elements. 
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INTRODUCTION 

The field of Evolutionary Developmental Biology (Evo-Devo) is a result of the 

merger of ideas from Evolutionary Genetics and Developmental Genetics (Carroll, 

2005a).  In the beginning of the 20th

 During the 1970s and 1980s many advances in technology pushed the field of 

Developmental Biology forward as well.  The majority of studies in Developmental 

Biology focused on morphological development: the patterning of the embryo, 

identifying embryonic morphological structures, organizational regions, and following 

cell migrations.  However, rapid advancement of the field was hampered by the 

 century Evolutionary Biology and Genetics were 

distinct fields of study and began to merge as biologists began to recognize that each field 

was related to the other.  In the 1940s the Modern Synthesis used paleontological, 

systematic, and genetic information to explain how natural selection could drive the 

gradual evolution of current complex forms from simpler forms observable in the fossil 

record.  Largely due to the seminal works of Julian Huxley in 1942 (Evolution: The 

Modern Synthesis) and Theodosius Dobzhansky (Towards a Modern Synthesis) in the 

journal Evolution in 1949, as well the work of Ernst Mayr and George Gaylord Simpson, 

the ides of Evolutionary Biology and Genetics were merged creating modern 

Evolutionary Biology and the field of Evolutionary Genetics (Carroll, 2009; Dobzhansky, 

1949; Huxley, 1943).  Because of the advent of Evolutionary Genetics, evolutionary 

theory began to push forward and address more difficult issues.  The field, however, 

largely ignored Developmental Biology for many decades. 
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misconceived notion that increased complexity of the organism must be correlated to an 

increased number of genes, compounded by an inability to easily study the actual 

nucleotide sequence of DNA (Carroll et al., 2008).  This idea was challenged in 1975 

when Mary-Claire King and Allan Wilson published a paper that demonstrated almost no 

difference between proteins of Humans and Chimpanzees (King and Wilson, 1975).  

Because of their findings King and Wilson hypothesized that the evolutionary difference 

between humans and chimps was a result of changes in gene regulation and not due to 

gene mutation or increased gene number.   

 The idea that increased complexity was related to increased gene numbers was 

permanently dispelled in the 1980s and early 1990s.  During this time period it was 

shown that bilaterian embryonic development was controlled by a specific set of genes, 

often called “tool-kit genes” (Carroll, 2006; Carroll et al., 2001).  One of the most 

surprising observations during this time period was that all bilaterians shared the same 

group of tool-kit genes, so the question then became what makes one animal different 

from another (Carroll, 2005b; Carroll, 2006)?  To address this question, in the 1980s the 

technologies and principles of Developmental Biology and Genetics were combined 

forming the field of Developmental Genetics and it was discovered that the major 

difference between bilaterians was not the genes that pattern their development.  Instead 

it was found that the difference between bilaterians is when and where these tool-kit 

genes were used during embryonic development (Carroll, 2005b; Carroll et al., 2008).   

The discovery that differences in bilaterian form was the result of altering the 

regulation of the same tool-kit genes had several implications.  First, it proved that the 

hypothesis put forth by King and Wilson in 1975 was correct, and it was for the most part 
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differences in the regulatory mechanisms controlling the genes, not the genes themselves, 

that explain the morphological differences between different bilaterian organisms.  

Second, these discoveries demonstrated that the evolution of form occurs by tinkering 

with the genes that control development and not the creation of new genes.  Third, the 

focus of Evolutionary Biology was shifted away from strictly looking at the genes 

themselves and toward investigating how developmentally regulated genes are controlled.  

Thus, in the mid 1990s the field of Evo-Devo was formed by merging the fields of 

Evolutionary Genetics and Developmental Genetics (Carroll, 2005a).   

Since its inception Evo-Devo has facilitated an exponential growth in our 

understanding of the processes of both evolution by natural selection and embryonic 

development.  With the availability of fully annotated and sequenced genomes from 

multiple organisms it has become possible to not only employ comparative 

developmental studies, but also to compare their genomic sequences (Allende et al., 

2006; Carroll, 2005a; Carroll et al., 2008).  By studying the regulatory mechanisms that 

control embryonic development in comparative studies, the field of Evo-Devo can in turn 

more efficiently study and elucidate the mechanisms that drive the evolution of form. 
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LITERATURE REVIEW 

Embryonic development in bilaterians is a complex, organized, and highly 

regulated process.  During this process body axes are established, and the body plan is 

determined through a complex series of molecular events.  Some of these events are 

controlled, at least in part, by homeobox genes. Homeobox genes are “tool-kit genes” that 

derive their name from homeotic mutations.  Discovery of homeobox genes in the fruit 

fly Drosophila melanogaster was facilitated by their resulting homeotic mutations.  First 

described in 1894, homeotic mutations result in the transformation of one region of an 

organism into the identity of another: for example, ectopic expression of the 

Antennapedia (Antp) gene in Drosophila (fruit fly) larva redesignated antennae into 

second legs (Gehring, 1987; McGinnis et al., 1984a; Schneuwly et al., 1987).  Through 

the study of several homeotic genes in Drosophila, including Antp, a conserved 180 base 

pair sequence of DNA shared by these homeotic genes was discovered in 1983 and was 

named the Homeobox (McGinnis et al., 1984a; McGinnis et al., 1984b; Scott and Weiner, 

1984).  The Homeobox sequence has been shown to be conserved in all animals studied 

to date.  It was determined that the 180 base pair Homeobox sequence codes for a 

conserved 60 amino acid domain termed the Homeodomain (HD) that consists of a helix-

loop-helix DNA-binding motif (Gehring, 1987; Goulding and Gruss, 1989; McGinnis et 

al., 1984a; Scott and Weiner, 1984). 
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The determination of the anterior/posterior (A/P) body axis is controlled in large 

part by a subfamily of Homeobox genes called Hox genes that have been identified in all 

bilaterian animals examined to date (Deschamps and van Nes, 2005; Gehring, 1987; 

Goulding and Gruss, 1989; Kessel, 1992; Kessel and Gruss, 1991; Lemons and 

McGinnis, 2006; Ogishima and Tanaka, 2007; Prince et al., 1998; Santini et al., 2003; 

Schneuwly et al., 1987).  Hox-like genes have also been isolated from several species of 

Cnidarians indicating that these genes have been evolutionarily conserved for hundreds 

of millions of years (Finnerty and Martindale, 1999).  Hox genes encode proteins that act 

as transcription factors and are expressed in restricted segments of the developing embryo 

functioning to activate regionally specific genes in a regimented manner determining A/P 

body axis pattern (Deschamps and van Nes, 2005; Gehring, 1987; Goulding and Gruss, 

1989; Kessel, 1992; Kessel and Gruss, 1991; Lemons and McGinnis, 2006; Ogishima and 

Tanaka, 2007; Prince et al., 1998; Santini et al., 2003; Schneuwly et al., 1987).  Hox 

genes are also responsible for the Proximal/Distal (P/D) patterning of the limb (Ahn and 

Ho, 2008).  Due to their vital roles in body axis determination it has been hypothesized 

that alteration of Hox gene expression patterns could serve as a powerful evolutionary 

mechanism, which is supported by studies examining the function of Hox gene function 

in the development of many organisms (Ahn and Ho, 2008; Duboule, 1993; Gendron-

Maguire et al., 1993; Salsi et al., 2008). 

In extant bilaterians Hox genes are grouped into clusters within the genome and 

are often expressed colinearly according to their chromosomal arrangement (Amores et 

al., 1998; Duboule, 2007; Prince et al., 1998).  Each cluster consists of an anterior, 

central, and posterior region where the 3′ genes are expressed anteriorly and earlier while 
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the more 5′ genes are expressed later and in more posterior regions (Amores et al., 1998; 

Lemons and McGinnis, 2006; Ogishima and Tanaka, 2007; Prince et al., 1998; Santini et 

al., 2003).  Most vertebrates have four Hox clusters (A, B, C, D) on different 

chromosomes consisting of 39 individual genes (Duboule, 2007; Goulding and Gruss, 

1989; Lemons and McGinnis, 2006).  Teleosts have additional Hox clusters due to a 

proposed genome duplication event after their divergence from the tetrapod lineage 

(Amores et al., 1998; Prince et al., 1998).  For example, the zebrafish (Danio rerio) has 7 

Hox clusters consisting of 49 genes.  Each Hox cluster contains a set of genes that are 

categorized into 13 paralog groups (ex: hoxB1, hoxB2) depending on their relationship to 

the Hox genes of Drosophila (Amores et al., 1998; Gehring, 1987; Goulding and Gruss, 

1989; Lemons and McGinnis, 2006; Prince et al., 1998; Prohaska and Stadler, 2004). 

The Hox transcription factors function by binding specific DNA sequences 

located within cis-regulatory elements associated with their respective target genes 

(Goulding and Gruss, 1989; Otting et al., 1990; Waskiewicz et al., 2001).  It has been 

demonstrated that this binding can be inefficient and that Hox proteins require the help of 

other proteins called cofactors to assist in DNA binding (Moens and Selleri, 2006; Prince 

et al., 1998).  Cofactors bind to Hox transcription factors, as well as DNA in a sequence 

specific manner increasing the protein complex’s DNA binding specificity (Choe and 

Sagerstrom, 2005; Moens and Selleri, 2006; Waskiewicz et al., 2001).  One such family 

of Hox cofactors is the Meis family (Burglin, 1997; Choe and Sagerstrom, 2005; Moens 

and Selleri, 2006; Williams et al., 2005). 

The Meis family consists of a collection of HD containing genes that belong to the 

TALE (Three Amino acid Loop Extension) class of homeobox genes.  The TALE 
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proteins are characterized by an additional three amino acids in the loop separating helix 

1 and helix 2 of the HD (Burglin, 1997; Choe and Sagerstrom, 2005; Moens and Selleri, 

2006; Williams et al., 2005).  The basis of the Meis name is Myeloid Ecotropic leukemia 

virus Integration Site because the founding member of the Meis family was identified 

when it was upregulated in mouse leukemia cells after the Myeloid Ecotropic Leukemia 

Virus was found to induce leukemia upon integration into the gene’s promoter region 

(Moskow et al., 1995).  Subsequent identification of several paralogs in many species led 

to the establishment of the Meis family (Steelman et al., 1997).  The Meis family consists 

of a solitary member in Drosophila, Homothorax (Hth) (Kurant et al., 1998; Pai et al., 

1998; Rieckhof et al., 1997), 4 vertebrate Meis genes (Meis1, Meis2, Meis3, and Meis4) 

(Moskow et al., 1995; Nakamura et al., 1996; Waskiewicz et al., 2001), and 2 divergent 

vertebrate genes Prep1 and Prep2 (Berthelsen et al., 1998a; Fognani et al., 2002).  

Members of the Meis family have been identified in every vertebrate examined, including 

the zebrafish Danio rerio (Choe et al., 2002; Sagerstrom et al., 2001; Waskiewicz et al., 

2001; Zerucha and Prince, 2001), the frog Xenopus (Salzberg et al., 1999; Steelman et al., 

1997), the mouse Mus musculus (Cecconi et al., 1997; Moskow et al., 1995; Nakamura et 

al., 1996; Oulad-Abdelghani et al., 1997), the chicken Gallus gallus (Coy and Borycki, 

2010), as well as humans (Smith et al., 1997; Steelman et al., 1997; Yang et al., 2000).  A  

C. elegans homolog, psa-3, has been identified as well (Arata et al., 2006), and there is a 

significant amount of identity between Meis genes and Knox genes in plants (Burglin, 

1997).  The identification of significant Meis gene identities in protostomes, 

deuterostomes, as well as plants indicates that Meis genes are of ancient origin predating 

the divergence of the plant and animal kingdoms (Burglin, 1998).  In spite of this ancient 
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ancestry, the general biochemical structure and protein-protein interactions of each 

member of the Meis family are highly conserved.   

Each Meis cofactor can be divided into 2 structural regions that are highly 

conserved; an N-terminal bipartite domain, and the HD (Berthelsen et al., 1998a; Burglin, 

1997; Chang et al., 1997; Jacobs et al., 1999; Knoepfler et al., 1997; Pai et al., 1998).  A 

third region, the C-terminal region, is conserved among homologous genes but is variable 

among paralogs, and is the region that is subject to splice variance known to be exhibited 

in several Meis genes and which will be discussed in more detail later (Ahn and Ho, 

2008; Burglin, 1997; Oulad-Abdelghani et al., 1997; Pai et al., 1998; Williams et al., 

2005; Yang et al., 2000).  Each structural domain has been demonstrated to provide a 

unique function to Meis transcription co-factors.  In the N-terminal bipartite domain, 

amino acids 30-60 contain 2 conserved regions known as the Meis1 (M1) and Meis2 

(M2) domains with the region between each domain being variable (Berthelsen et al., 

1998b; Burglin, 1997; Chang et al., 1997; Knoepfler et al., 1999; Pai et al., 1998).  The 

M1 and M2 domains are predicted to give rise to a coiled-coil motif, and are essential to 

facilitate Meis protein dimerization with Pbx proteins (Berthelsen et al., 1998b; Chang et 

al., 1997; Jacobs et al., 1999; Knoepfler et al., 1999).  Both domains have been shown to 

be essential for Meis functionality outside of Pbx interaction, and the M1 domain may 

also contain an auxiliary binding site for other proteins (Choe et al., 2002). 

The HD of the Meis family is highly conserved and structurally located in the 

center of the peptide.  The HD provides Meis cofactors the ability to bind DNA, and each 

Meis cofactor has been shown to preferentially bind the sequence TGACAG / ACTGTC 

(Berthelsen et al., 1998a; Chang et al., 1997; Waskiewicz et al., 2001).  Early studies 
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indicated that DNA binding by Meis cofactors was not important, but more recent studies 

have demonstrated that Meis DNA binding ability is indeed important to embryonic 

development in the vertebrate lineage (Waskiewicz et al., 2001).  It has been suggested 

that Meis DNA binding ability may be dependent on or modulated by Meis cofactor 

interaction with Pbx cofactors (Berthelsen et al., 1998a; Chang et al., 1997).  Further, 

amino acid residue 50 of the HD has been shown to vary among different TALE family 

members and may be necessary to provide Meis cofactors with a unique DNA binding 

sequence specificity (Burglin, 1997). 

The C-terminal region of Meis proteins is far more variable than the N-terminal 

and HD regions and has been shown to be the site of splice variation (Burglin, 1997).  

There have not been splice variants described for Prep1, Prep2, Hth, or Meis3, but Meis1 

has 2 known variants (a and b) (Steelman et al., 1997), and Meis2 has at least 4 splice 

variants (a, b, c, d) in mice (Oulad-Abdelghani et al., 1997) and 5 in humans with Meis2e 

having a truncated HD (Yang et al., 2000).  The C-terminus of Meis cofactors can 

physically interact with Hox transcription factors, and splice variation appears to provide 

selective interaction with different Hox Paralog Groups (PG) (Huang et al., 2005; Shen et 

al., 1997; Williams et al., 2005).  This would indicate that Meis cofactors can 

differentially interact with specific Hox PGs depending on C-terminal variation 

(Williams et al., 2005).   

In addition to physical interactions with various Hox proteins many other 

functions have been ascribed to the C-terminal region of Meis proteins.  It is specifically 

the C-terminal region of Meis proteins that is involved in the progression of Acute 

Myelogenous Leukemia (Mamo et al., 2006).  This region has also been directly 
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demonstrated to be necessary to inhibit Histone Deacetylase (HDAc) activity, resulting in 

the acetylation of Histone 4 (H4) priming some promoters for transcriptional activity 

(Choe et al., 2009; Huang et al., 2005).  To further support the importance of the C-

terminus for functionality Huang et al. demonstrated that when the C-terminal region of 

Meis1 is lost, the mutant protein will still form higher order complexes, but the 

functionality of these complexes is inhibited (Huang et al., 2005). 

 As mentioned earlier the N-terminal region of every member of the Meis family 

has been shown to be necessary for physical interaction between Meis and Pbx cofactors.  

In fact, every member of the Meis family has been shown to directly interact with 

members of the Pbx family, both in vitro and in vivo (Abu-Shaar and Mann, 1998; 

Ferretti et al., 2006; Knoepfler and Kamps, 1997).  Due to the high level of conservation 

in both the Pbx and Meis families, Meis-Pbx interactions appear to be promiscuous 

(Azcoitia et al., 2005).  Meis and Pbx dimers cooperatively bind to consensus half sites in 

vitro and in vivo with the physical interaction providing DNA binding stability to the 

complex.  These functional half sites can be located next to each other, but have also been 

shown to be flexible regarding distance between half sites, with distances of 7bp and 

12bp known to exist when binding in vivo (Abu-Shaar and Mann, 1998; Jacobs et al., 

1999; Knoepfler et al., 1999; Ryoo and Mann, 1999; Wang et al., 2001). 

 To date, Meis-Pbx dimers have been shown to bind numerous regulatory 

sequences in vivo, including cis-regulatory sequences of: Hox, Myogenin, Sox3, and the 

Malic Enzyme gene (Berkes et al., 2004; Choe et al., 2009; Knoepfler et al., 1999; 

Mojsin and Stevanovic, 2010; Wang et al., 2001).  These dimers have been demonstrated 

to be transcriptionally active, and be able to physically interact with other transcriptional 
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complexes like: bHLH transcription factor MyoD, Retinoic Acid (RA) receptors RARα 

and RXR, as well as displacing HDAcs associated with Pbx cofactors when bound to 

promoters in vivo (Choe et al., 2009; Knoepfler et al., 1999; Mojsin and Stevanovic, 

2010; Wang et al., 2001). 

 Meis-Pbx dimerization, in addition to transcriptional modulation, has the function 

of influencing the nuclear localization of each cofactor.  This was first identified by 

Rieckhof et al. in 1997 when they observed that the presence of Hth is necessary for the 

nuclear localization of the Drosophila Pbx homolog Extradenticle (Exd) (Rieckhof et al., 

1997), which was further supported by the observation that the Hth HM domain 

(Drosophila M1 plus M2 domain) is sufficient to drive Exd nuclear transport (Ryoo et al., 

1999).  The reliance on Meis/Hth presence for Pbx/Exd nuclear localization has been 

shown to be consistent in mice as well (Abu-Shaar et al., 1999; Berthelsen et al., 1999; 

Capdevila et al., 1999; Kurant et al., 1998; Mercader et al., 1999).  However, the opposite 

requirement has been identified in zebrafish, Xenopus, and spiders.  In these lineages it 

appears that Pbx is constituently nuclear, and Meis cofactors require the presence of Pbx 

for nuclear localization (Deflorian et al., 2004; Maeda et al., 2002; Prpic et al., 2003; 

Vlachakis et al., 2001).  Consistent with the species specific requirement for one member 

of the Meis-Pbx dimer to be present to drive the nuclear localization of the other, it has 

been observed that both Pbx and Meis expression domains frequently overlap (Toresson 

et al., 2000).   

In spite of this correlation it has been observed that in some cases Meis is not 

sufficient to drive Pbx nuclear localization, and that Exd is nuclear in the absence of Hth 

in imaginal disc cells (Rieckhof et al., 1997; Swift et al., 1998).  It was shown by Saleh et 
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al. that in species where Pbx peptides require the presence of Meis that the Pbx peptide 

contains 2 Nuclear Localization Signals (NLSs) located in its N-terminal region.  They 

proposed a model where the NLSs, which are masked due to native protein folding, are 

exposed following a conformational change reliant on the binding of Meis, initiating 

nuclear localization of both cofactors (Saleh et al., 2000).  Pbx cofactors also have a 

phosphorylation site in the N-terminal region.  It has been proposed that this site is 

necessary for Pbx nuclear localization in the absence of Meis cofactors via 

phosphorylation, resulting in the same conformational change that Meis would initiate 

exposing the NLSs, driving Pbx nuclear localization.  Subsequently Pbx remains 

cytoplasmic when the site is dephosphorylated, thus providing additional control over the 

nuclear localization of Pbx through the regulation of PKA activity (Kilstrup-Nielsen et 

al., 2003).  The ability for both cofactors to be nuclear independent of each other in some 

situations provides an additional post-transcriptional regulatory mechanism that may 

facilitate differential gene regulation by modulating transcription factor availability in the 

nucleus. 

 Meis cofactors have been shown to form higher order complexes with Hox 

proteins in addition to Pbx.  Meis-Hox dimer interactions were first observed in 1997 by 

Shen et al. when they demonstrated that Meis1 will cooperatively bind DNA on 

consensus half sites (TGACAG-TTAT / Meis-Hox binding sites respectively) with 

HoxA11, HoxD12, and HoxD13 in Electrophoretic-Mobility Shift Assays (EMSA) (Shen 

et al., 1997).  Unlike what has been observed for Meis-Pbx consensus binding sites, the 

spacing of Meis-Hox consensus binding sites have been shown to be obligatory neighbors 

lacking flexibility (Ryoo et al., 1999).  In the following years numerous Meis cofactors, 
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although not Prep1 or Prep2, have been demonstrated to directly interact with a variety of 

Hox gene products (Choe and Sagerstrom, 2005; Fujino et al., 2001; Pai et al., 1998; 

Ryoo et al., 1999; Shanmugam et al., 1999; Thorsteinsdottir et al., 2001).  Of particular 

interest, Meis cofactors appear to dimerize with Adb-B like Hox PGs 9-13.  In many 

cases Meis cofactors have been shown to form trimers with Hox and Pbx cofactors, 

where the Meis peptide interacts with a Pbx-Hox dimer.  The interaction between Pbx 

and Hox is facilitated by a conserved tryptophan motif in the Hox transcription factor.  

However, Hox PGs 9-13 lack this tryptophan motif making them unlikely to physically 

interact with Pbx.  This indicates that Meis specific interaction with Adb-B like Hox 

transcription factors may be of significance (Shen et al., 1997).  However, as 

demonstrated by Williams et al., Meis cofactors, in addition to Adb-B like Hox 

transcription factors, physically interact with other Hox transcription factors.  Using a 

yeast expression system the group was able to demonstrate that Meis1, Meis2, and Meis3 

cofactors combined are capable of dimerizing with Hox PGs 2, 4, 5, 8, 9, 10, 11, 12, and 

13.  Furthermore, they demonstrated that different Meis splice variants have different PG 

binding preferences (Williams et al., 2005).  This observation indicates that not only do 

individual Meis cofactors form functional dimers with Hox transcription factors from 

multiple PGs, each individual Meis gene preferentially dimerizes with different PGs 

depending on which variant is present.  This provides a developing organism the ability 

to have multiple Meis cofactors present while simultaneously differentially regulating its 

genome by controlling which functional partners are present to interact. 

In addition to dimerization with Pbx cofactors or Hox transcription factors, Meis 

cofactors are also known to form trimeric complexes with Hox and Pbx.  Originally 
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proposed by Chang et al., every member of the Meis family has been demonstrated to 

have the ability to form trimeric complexes with Hox and Pbx cofactors (Figure 1) 

(Berthelsen et al., 1998a; Chang et al., 1997; Jacobs et al., 1999; Kurant et al., 1998; 

Shanmugam et al., 1999; Shen et al., 1999; Vlachakis et al., 2001; Vlachakis et al., 2000).  

The first several experiments performed showed that DNA binding by Meis was not a 

requirement for higher order complex formation.  It was shown through multiple 

experiments that a Pbx-Hox dimer will bind to consensus Pbx-Hox half sites followed by 

a Meis cofactor binding to the Pbx cofactor independent of Meis-DNA interaction.  It 

was even shown that the formation of higher order complexes was not dependent on the 

integrity of the Meis HD. (Berthelsen et al., 1998a; Shanmugam et al., 1999; Shen et al., 

1999). 

Following these initial experiments there was much disagreement as to the 

functional input of the Meis cofactors in these trimeric complexes.  However, these 

original studies involved EMSAs on Meis-Pbx-Hox consensus sites located adjacent to 

Meis Pbx/Hox 

Figure 1: Meis-Pbx-Hox Trimeric Interactions  
Ovals represent transcription factors, smaller rectangles 
represent transcription factor binding sites, triangle  
is a promoter, and the long rectangle is the target gene.  
Meis, Pbx, and Hox transcription factors are known to 
form higher order complexes regulating the expression 
of their target gene. 
Adapted from Berthelsen et al., 1998a and Jacobs et 
al.,1999 
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each other.  Using cellular extracts or in vitro translated products, different groups were 

able to show that the mutation of the Meis binding site did not negatively impact the 

formation of trimeric complexes.  In 1999, Jacobs et al. were the first to notice that there 

were Meis consensus sites present in the HoxB1 ARE and rhombomere (r) 4 regulatory 

elements in vivo.  Unlike previous binding sites studied in vitro these Meis consensus 

sites were not directly adjacent to the Pbx-Hox core, but rather, were located 1 helical 

turn and 2 helical turns away from any present Pbx-Hox consensus sites respectively 

(Jacobs et al., 1999).  The group subsequently demonstrated that Meis co-factors enter 

into trimeric complexes with Pbx and Hox at the ARE and r4 sites as a DNA binding 

partner (Jacobs et al., 1999).  Almost every investigation that followed has found Meis 

cofactors to be DNA binding members of any higher order complexes that they form.  In 

many cases, Meis cofactor DNA binding has been shown to modulate sequence binding 

specificity, to be required for complex formation, and contribute to the transcriptional 

activity of the complex (Choe et al., 2009; Fujino et al., 2001; Jacobs et al., 1999; Kurant 

et al., 1998; Sarno et al., 2005; Schnabel et al., 2000; Vlachakis et al., 2001; Vlachakis et 

al., 2000). 

 It was initially believed that Meis cofactors only form higher order complexes 

with Hox and Pbx, but it is now known that Meis cofactors form higher order complexes 

with several non-canonical binding partners.  The first non-canonical binding partner 

identified was PDX1, when it was demonstrated by Swift et al. in 1998 that MEIS2 forms 

a trimeric complex with PBX1b and PDX1 in human Acinar cells. In this case MEIS2 

was shown to be a DNA non-binding member of the complex, but it would be interesting 

to revisit the binding site and see if a detached Meis binding site exists given that the 
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work was done around the same time as when the flexibility in Meis binding site location 

was identified (Liu et al., 2001; Swift et al., 1998).  Meis and Pbx cofactors have since 

been shown to function as DNA binding members of higher order complexes with 

MyoD-E12 dimers, TLX1, RARα, TR-RXR dimers, and hypothetically with FOXP2 in 

the primate forebrain (Knoepfler et al., 1999; Milech et al., 2010; Mojsin and Stevanovic, 

2010; Takahashi et al., 2008; Wang et al., 2001).  Meis co-factors have also been shown 

to bind cis-regulatory elements that control Pax6 transcription independent of Pbx in the 

developing eye or with Pbx in the Acinar cells (Zhang et al., 2002; Zhang et al., 2006).  

The identification of novel interactions and DNA binding partners in a plethora of 

different tissues indicates that there may be more novel partners to be identified.   

An array of binding partners, in combination with the coupling of nuclear 

localization mechanisms and preferential interactions dependent on splice variation, lays 

the groundwork for an extremely complex and intricate interplay of regulatory 

mechanisms.  Because the basic regulatory functions of Meis cofactors are mostly 

conserved among each member of the family, the complexity would make it possible for 

a developing organism to differentially regulate developmental cascades according to 

positional and temporal requirements.  The built in potential for redundancy may make it 

possible for expressions patterns to be slightly altered, and tweaked with little negative 

side effects.  This ability would allow for the establishment of the necessary variation for 

natural selection to act on without being detrimental to the organism.   

In addition to the many homologous functions and structures conserved within the 

Meis family, each member of the Meis family has also evolved specific functions and 

roles in development.  Phylogenetic analysis of the Meis family shows that the Prep and 
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Meis genes were the first members to diverge from each other; hence the Prep genes are 

the most ancient.  According to all available phylogenetic information this divergence 

occurred prior to that of the protostome and deuterostome lineages, since the next Meis 

family to diverge was Hth, the Drosophila homolog.  This is interesting because, to date, 

there has not been a Prep homolog identified in Drosophila or any other protostome, but 

homologs have been identified in all vertebrates examined.  Next, Meis3 diverged in 

vertebrates, followed by the divergence of Meis1 and Meis2 from a common ancestor 

gene (Biemar et al., 2001; Burglin, 1997; Coy and Borycki, 2010; Moens and Selleri, 

2006; Nakamura et al., 1996; Nam and Nei, 2005; Williams et al., 2005; Zerucha and 

Prince, 2001).  Thus Meis1 and Meis2 are the most recent genes to have evolved (Figure 

2). 

Prep genes are ubiquitously expressed during early zebrafish embryonic 

development.  Deposited maternally, prep1 exhibits its highest expression level at the 

germ-ring stage, with ubiquitous expression continuing through 24 hours postfertilization 

(hpf).  At 72 hpf prep1 expression becomes restricted to the brain and optic vesicles in 

the zebrafish central nervous system (CNS) (Choe et al., 2002; Deflorian et al., 2004; 

Waskiewicz et al., 2001).  Functionally, Prep genes have been implicated in numerous 

developmental processes in multiple organisms. Overexpression studies in the zebrafish 

have demonstrated that Prep1 is involved in the development of the posterior nervous 

system, with mutants exhibiting gradations of cyclopia like phenotypes, a reduced 

forebrain, and caudalization of anterior neural structures (Deflorian et al., 2004).  This 

indicates that Prep1 is functional in the specification of the presumably more ancient 

posterior structures of the CNS, because it appears that when there is an excess of Prep1 
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it can override the anterior patterning pathways, respecifying them to a posterior-like 

form. 

 Knockout studies in mice and knockdown studies in zebrafish have demonstrated 

even more drastic phenotypes.  Double null Prep (-/-

mPrep1 

) mutant mice exhibit severe 

morphological phenotypes as well as alterations in genetic expression patterns.  As the 

embryos of these mutants develop they exhibit hematopoietic failure and reduced eyes.  

They also have morphological deficiencies in the hematopoietic liver as well as other 

cPrep1 zPrep1.2 zPrep1.1 mPrep2 xtPrep2 cPrep2 zPrep2 

xtMeis3 

xlMeis3 

zMeis3 

mMeis3 

zMeis1 

cMeis1 

mMeis1 

xtMeis1 

zMeis2.2 xtMeis2 

zMeis2.1 

mMeis2 cMeis2 

zMeis4.1 

Hth 

Figure 2: Phylogenetic Tree of Meis and Prep Families (Based on Coy and 
Borycki, 2010) 
z stands for zebrafish (Danio rerio) 
c stands for chicken (Gallus gallus) 
xt stands for frog (Xenopus tropicalis) 
xl stands for frog (Xenopus laevis) 
m stands for mouse (Mus musculus) 
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organs.  All of these morphological abnormalities are accompanied by almost no Meis2 

expression at all, no Pax6 expression in the developing retina or lens, and significantly 

decreased Meis1 and Pbx expression (Ferretti et al., 2006).  In zebrafish prep1 

morpholino (MO) studies, the morphants exhibited severe neural deformities, including: 

loss of r1/2 and r6/7 boundaries, defective hindbrain patterning, reduced eyes, 

microcephaly, and a lack of neural crest derived cephalic cartilage and jaws.  These 

morphants also exhibited a loss of rhombomeric specific gene expression, heightened 

neuroectoderm and CNS apoptosis, as well as reduced or impaired motor ability.  In 

addition to the neural defects, prep1 morphants also had severe mesodermal phenotypes 

exhibiting atrophic pectoral fins, an absence of swim bladders, and pericardial edema.  

Morpholino treatment was lethal by 6 to 7 days past fertilization (dpf) (Deflorian et al., 

2004). 

Based on morphological studies in both mice and zebrafish, it has been 

hypothesized that Prep1 may function as a master regulatory gene, functioning to 

regulate members of the Meis and Pbx families (Ferretti et al., 2006).  Because many of 

the Prep1 phenotypes observed are also observed in Meis and Pbx mutants, combined 

with the ubiquitous early expression pattern of Prep1, it is feasible that the observed 

Prep1 effects could be caused by the downstream effects of the decrease in Meis1 and 

Meis2 expression observed in mice (Ferretti et al., 2006).  Further support for this idea 

comes from an earlier study that found that Prep1 is negatively regulated while Meis1 is 

positively regulated by RA in P19 cells (Ferretti et al., 2000). 

In addition to Meis regulatory functions, it appears that Prep genes may also be 

necessary for proper development of endodermal structures.  In the mouse pancreas, 
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Prep1 and Prep2 cofactors both synergistically bind to the Pax6 promoter with Pbx on a 

consensus Meis-Pbx site.  Pax6, in addition to being a neural transcription factor, is also a 

pancreatic endodermal determinant, and this Prep-Pbx interaction is favored over any 

other Meis co-factors that might be present (Delporte et al., 2008; Zhang et al., 2006).  

This observation, when combined with mesodermal defects identified in other studies, 

would indicate that Prep functions in endodermally derived structures, potentially 

independently from other Meis genes.   

Prep cofactors also have regulatory roles that have been ascribed to them, with 

some overlap with other Meis cofactors.  While Prep1 has been shown to enhance 

Pbx/Hox related reporter activity (Berthelsen et al., 1998a) and drive ectopic Hox 

expression when overexpressed (Choe et al., 2002), it has also been demonstrated that 

Prep1 cofactors do not physically interact with PG 3 or PG 9 Hox transcription factors 

(Thorsteinsdottir et al., 2001).  In addition, the C-terminal domain of Prep1 has no 

functional role in H4 acetylation like Meis cofactors do (Huang et al., 2005). 

Combined, the lack of direct Hox interaction and an inability to influence H4 

acetylation indicates that Prep gene function is more than likely less specialized than the 

Meis genes that they are related to.  The wide array of Meis gene like phenotypes coupled 

with downregulation of Meis1 and Meis2 indicate a role for Prep genes as regulators of 

Meis genes.  Especially when one considers the non-Meis like phenotypes of lacking 

swim bladders and pericardial edema, it is a logical conclusion that the functions of Prep 

genes represent a conserved, ancient mesodermal role. 

The most perplexing aspect of Prep function is the phylogenetic history.  Prep1 is 

not sufficient to substitute for Hth in Drosophila, indicating a vertebrate specific function 
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(Vlachakis et al., 2001).  This observation is consistent with the phylogenetic analysis 

placing Hth more closely related to Meis1, Meis2, and Meis3 than the Prep genes (Figure 

2) (Coy and Borycki, 2010; Moens and Selleri, 2006; Nam and Nei, 2005).  It has also 

been predicted that the Most Recent Common Ancestor (MRCA) between protostomes 

and deuterostomes had a single Prep gene, a single Meis gene, and subsequently the Prep 

gene was lost in the entire protostome lineage (Nam and Nei, 2005).  But this prediction 

begs a major question: If Prep function is reminiscent of an ancient function, is essential 

to the patterning of mesodermal structures, as well as initiating subsequent Meis 

expression; how could the Prep gene be categorically lost in the protostome lineage 

without it being fatal?  Furthermore, what transcription factor or factors took over the 

role in driving Hth expression?  From a functional standpoint, it may make more sense to 

evaluate the possibility that the Prep genes could have diverged in the Meis gene lineage 

after the protostome-deuterostome lineage split, retaining only the basal Meis functions, 

while the Meis genes simultaneously maintained ancient higher order functions and 

evolved new functions.  This scenario would be in accordance with the Sub-

functionalization scenario of the Duplication – Degeneration – Complementation (DDC) 

(Force et al., 1999) theory for gene evolution following duplication events (Figure 3).  

This would also explain the lack of function in the Prep C-terminus, but the conservation 

of N-terminal and HD function, while not being able to substitute for Hth functionally. 
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A B C 

Duplication 

Figure 3: Duplication-Degeneration-Complementation Model for Gene 
Evolution 
Occasionally mutations occur where genes, chromosomes, or entire genomes are 
duplicated.  These mutations result initially in 2 identical paralogous genes and their 
cis-regulatory elements.  Ovals are cis-regulatory elements, purple oval is a novel cis-
regulatory element resultant of mutation. 
(A) Sub-functionalization: Following duplication, individual regulatory elements of 
one paralog can be mutated or deleted (degenerated) and there will be no adverse 
affects to the organism because the other paralogous element can maintain ancestral 
function.  As a result both genes will be evolutionarily maintained through natural 
selection to prevent a loss of gene function, but each gene will exhibit a subset of the 
original expression pattern. 
(B) Non-functionalization:  Following duplication, all regulatory elements of one 
paralog, or the gene its self, can be mutated or deleted (degenerated) and there will be 
no adverse affects to the organism because the other paralogous gene will be 
sufficient to preserve ancestral function.  As a result, one paralog and its regulatory 
mechanisms will be evolutionarily maintained through natural selection to prevent a 
loss of gene function, while the other paralog will be lost over time resulting in a 
pseudogene. 
(C) Neo-functionalization: Following duplication, one paralog can come under the 
control of a novel cis-regulatory element generated by random mutation in one of the 
ancestral elements resulting in a novel function for that particular paralog.  If this 
novel function proves advantageous, natural selection will maintain it, while the 
original cis-regulatory elements can maintain ancestral function with no adverse 
affects to the organism.  As a result, one paralog and its ancestral regulatory 
mechanisms will be evolutionarily maintained, while the other paralog will evolve 
some novel function due to its new regulatory mechanism. 
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Based on phylogenetics the next member of the Meis family to diverge was the 

Drosophila homolog Hth (Coy and Borycki, 2010; Moens and Selleri, 2006; Zerucha and 

Prince, 2001).  Hth has been implicated in several basal Drosophila developmental 

functions, most of which are conserved among vertebrate Meis genes.  It was first thought 

that Meis genes may function to modulate Hox genes when it was noticed that Hth loss-

of-function phenocopies Hox phenotypes.  In this case, loss of Hth resulted in an altered 

number of nerve roots in the Drosophila CNS (Kurant et al., 1998; Rieckhof et al., 1997).  

Functional studies have demonstrated that Hth functions possibly to suppress eye 

development (Heine et al., 2008; Pai et al., 1998), forms higher order complexes as a 

DNA binding cofactor with transcriptional activity, is essential for Engrailed function, 

and regulates Distal-less activity (Dibner et al., 2001; Inbal et al., 2001; Kobayashi et al., 

2003; Ryoo et al., 1999).  Hth has been shown to affect gene expression in Drosophila in 

a similar manner to that of XMeis3 in Xenopus, as well as to be necessary for proper 

neuronal differentiation and positioning (Inbal et al., 2001).  It has even been shown that 

Meis1 can functionally substitute for Hth (Rieckhof et al., 1997).  

In addition to neural and regulatory roles, Hth is also expressed in the developing 

limb of Drosophila, where its expression is restricted to the proximal region of the limb 

primordia, dividing the limb into proximal Hth+ and distal Hth- regions.  In the distal 

region, Hth is actively suppressed by Wingless and Decapentaplegic.  This regional 

expression pattern is conserved across both the protostome and deuterostome lineages.  

The conservation indicates an ancient origin for the role of Hth in limb development 

(Abu-Shaar and Mann, 1998; Mercader et al., 1999).  
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All together, the high degree of functional and sequence conservation between 

protostomes and deuterostomes seems to indicate that the functions of Hth may closely 

resemble Meis function in the MRCA of the 2 lineages.  Unlike the deuterostome lineage, 

however, there have not been large scale gene duplication events in the protostome 

lineage resulting in the existence of only a single Meis homologue in Drosophila.   

The next step in the evolution of the Meis family was the divergence of Meis3 in 

deuterostomes (Coy and Borycki, 2010; Moens and Selleri, 2006; Zerucha and Prince, 

2001).  Expression studies of Meis3 in Xenopus, zebrafish, and mouse have all 

demonstrated a similar expression pattern during development.  CNS expression is 

limited to the neural tube/spinal cord, and the posterior region of the hindbrain, with an 

anterior boundary at the r3/r4 boundary.  Expression is initiated early in development and 

rapidly fades, becoming restricted to the spinal cord and small subpopulations of 

expression in the posterior hindbrain (Sagerstrom et al., 2001; Salzberg et al., 1999; 

Waskiewicz et al., 2001).  Outside of the CNS Meis3 is expressed early in the proximal 

region of the developing limb/pectoral fin, and somites, becoming endodermally 

restricted later in development (diIorio et al., 2007; Sagerstrom et al., 2001; Waskiewicz 

et al., 2001; Williams et al., 2005).  In mice, Meis3 is also expressed in the developing 

male and female reproductive tracts (Williams et al., 2005).   

In accordance with CNS expression patterns, morphological studies have 

demonstrated an essential role for Meis3 in the posterior CNS.  Mutational studies in 

Xenopus and zebrafish have shown that Meis3 functions to caudalize the CNS to an r4 

hindbrain-like state.  When expression is impaired, posterior truncations and expansion of 

anterior CNS structures are observed (Dibner et al., 2001).  A partial loss of Meis3 
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function, as indicated by a loss of distinct boundary formation and Mauthner neurons 

misplacement in r4, results in a loss of rhombomeric identity, respecifying the hindbrain 

to r4.  This demonstrates an anterior shift in tissue specificity, while a total loss of 

function results in a loss of segmentation altogether (Choe and Sagerstrom, 2004, 2005; 

Choe et al., 2002).   

Overexpression studies agree with loss of function studies, showing that when 

Meis3 is overexpressed a decrease in anterior markers and structures, coupled with an 

increase in posterior marker expression, and an anterior expansion of posterior structures 

occurs (Salzberg et al., 1999; Vlachakis et al., 2001).  Morphological studies have 

prompted investigators to hypothesize that r4 represents a native state of the hindbrain, 

and Meis3 functions to inhibit this fate in more posterior structures (Choe and 

Sagerstrom, 2004, 2005).  In further support of this idea, genetic analysis shows that 

Meis3 may function to specify the posterior hindbrain.  It has been shown that Meis3 

expression is essential for the proper expression of hoxb1a and hoxb2 in the zebrafish 

(Choe et al., 2002).  Choe and Sagerstrom went on to show that PG1 hox genes function 

to specify an r4 type state while, in r5 and r6, another gene, vhnf1, functions to suppress 

this signal specifying a more posterior fate.  They also showed that vhnf1 has multiple 

consensus Meis binding sites its promoter, and Meis3 functions with hoxb1a to induce 

vhnf1 expression in r5 and r6, thus inhibiting the r4 specification program from 

proceeding (Choe and Sagerstrom, 2004, 2005).   

In addition to developmental roles in the CNS, Meis3 also has endodermal roles in 

zebrafish; namely in pancreatic development and the repression of the insulin pathway 

(diIorio et al., 2007).  Studies have shown that Meis3 is essential for Shh and Foxa2 
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expression in the anterior endoderm, indicating that Meis3 is an upstream regulator of the 

pancreatic repression pathway.  Additionally, Meis3 is suspected of having a role in the 

diversification of the branchial arches in zebrafish (diIorio et al., 2007).  This latter 

possibility has yet to be explored in detail, but given functional overlap between members 

of the Meis family, it is plausible. 

Another important function that has been identified for Meis3 involves H4 

acetylation.  Choe et al. have recently demonstrated that Meis3 has the ability to promote 

H4 acetylation at Hox promoters in vivo (Choe et al., 2009).  Believed to function by 

displacing HDAc, Meis3 has been proposed to prime genes for activity by promoting H4 

acetylation, and easing chromosomal compaction.  The research group also noticed that 

neither Pbx nor Hox cofactors were bound to promoters in the absence of Meis3 or an 

acetylated H4, causing them to suggest that Meis cofactor DNA binding may be a 

prerequisite for subsequent transcription factor binding (Choe et al., 2009).  The 

biochemical source of this function has not been identified, but if the source of the 

function is in either the N-terminal region or the HD central region, it would indicate that 

all Meis genes may have the same activity, sharing an ancient evolutionarily conserved 

role in chromosomal modification.   

The most recent lineages to diverge in the Meis family were Meis1 and Meis2 

(Coy and Borycki, 2010; Moens and Selleri, 2006; Zerucha and Prince, 2001).  Meis1 and 

Meis2 both have significant impacts on development and demonstrate restricted 

expression patterns similar to Meis3.  Meis2 expression has been evaluated in zebrafish, 

mouse, chicken, monkey, and several other mammals.  While there is only one Meis2 

paralog in most vertebrates, due to a recent genomic duplication event in the teleost 
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lineage zebrafish have two paralogs: meis2.1 and meis2.2 (Waskiewicz et al., 2001; 

Zerucha and Prince, 2001).  Among all animals examined there are several 

commonalities that occur in the expression patterns of Meis2 as it is expressed in the 

proximal limb bud of every vertebrate examined to date, with the exception of meis2.1 in 

zebrafish (Capdevila et al., 1999; Coy and Borycki, 2010; Mercader et al., 1999; 

Mercader et al., 2005; Waskiewicz et al., 2001; Zerucha and Prince, 2001).  Restricted 

Meis2 expression has also been described in the forebrain, midbrain, and hindbrain of 

every vertebrate examined to date, especially in the developing lens and retina.  Meis2 

expression in the neural tube/spinal cord and branchial arches (exception of meis2.1) of 

vertebrates has also been described (Capellini et al., 2008; Conte et al., 2010; Coy and 

Borycki, 2010; Heine et al., 2008; Oulad-Abdelghani et al., 1997; Takahashi et al., 2008; 

Toresson et al., 1999; Vennemann et al., 2008; Waskiewicz et al., 2001; Zerucha and 

Prince, 2001).  In addition to expression in the CNS, Meis2 has been described in the 

somites (specifically in the sclerotome) (Capellini et al., 2008; Cecconi et al., 1997; 

Waskiewicz et al., 2001), and in both the male and female reproductive tracts (Crijns et 

al., 2007; Oulad-Abdelghani et al., 1997; Williams et al., 2005).  The only germ layer 

where Meis2 embryonic expression has not been described in is the endoderm (diIorio et 

al., 2007). 

Functional studies have implicated Meis2 in the development of many structures.  

Some of the less well studied are the pancreas where Meis2 may serve as a switch 

between endocrine and exocrine determination in cultured Acinar cells (Liu et al., 2001; 

Swift et al., 1998), primate forebrain structures associated with the acquisition of 

language (Takahashi et al., 2008), and in muscle histogenesis (Cecconi et al., 1997).  The 
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structures where Meis2 has a function that have been studied in the most detail are the 

hindbrain, limb, and eye.  Expression studies have shown that Meis2 plays a role in the 

patterning of the hindbrain, where Meis2 cofactors have been shown to synergize with 

Hox/Pbx dimers, as well as Iroquois transcription factors on element C driving Krox20 

expression in r3 (Stedman et al., 2009; Wassef et al., 2008).  Ectopic expression of Meis2 

has been shown to cause midbrain structures to transform caudally (Vennemann et al., 

2008), and to expand anterior hindbrain structures (r1 through r3) anteriorly (Wassef et 

al., 2008). 

Meis2 has also been shown to be essential for normal development of the adult 

limb.  Just as with Hth, Meis2 expression is restricted to the proximal limb primordia 

where it has been shown to be responsive to RA, and function to repress the distal limb 

program (Capdevila et al., 1999; Kumar et al., 2007; Mercader et al., 2005).  In the 

developing limb, Meis2 is antagonized by BMP and Gremlin, two known distal factors.  

As a result it has been proposed that Pbx/Meis cofactors may function as proximal factors 

in the proximal limb bud, while distal progression of their expression domains is 

restricted by the Shh/FGF loop via BMP and Gremlin (Capdevila et al., 1999).  Meis2 is 

such a strong proximal activator that when Meis2 is ectopically expressed distally, all 

distal structures are transformed to a proximal fate (Capdevila et al., 1999). 

In the vertebrate eye, Meis2 has been shown to be important for several different 

functions.  Recently Conte et al. showed that dosage of Meis2 is controlled by the 

microRNA miR-204 in the lens and optic cup of chickens.  They demonstrated a role for 

Meis2 in lens differentiation, dorsal-ventral patterning of the optic cup, and a necessity of 

Meis2 expression for closure of the optic fissure (Conte et al., 2010).  In the developing 
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eye Meis2 cofactors have been shown to be upstream regulators of Pax6 in both the 

retina and lens (Hisa et al., 2004; Zhang et al., 2002).  In addition to Pax6 regulation, 

Meis2 has been implicated in the maintenance of progenitor stem cell populations in the 

developing retina, noting a progressing wave of neural differentiation corresponding to a 

regressing wave of Meis2 expression.  It has also been shown that the duration of Meis2 

expression is species specific, and correlates to eye and retinal size (Heine et al., 2008; 

Hisa et al., 2004). 

While Meis2 has been implicated in the maintenance of progenitor stem cell 

populations in the retina, Meis2 has also been shown to be a marker for specific subtypes 

of postmitotic neurons, including GABAergic Amacrine (AM) cells and striatal neurons 

(Bumsted-O'Brien et al., 2007; Toresson et al., 1999).  This indicates that Meis2 has a 

functional role in maintaining progenitor populations, as well as in determining neural 

transmitter subtype.  These are seemingly opposite roles, but it is plausible since Meis1 

(as described later) has been implicated in cell cycle control (Bessa et al., 2008), and that 

Meis2 has been implicated in determining exocrine vs. endocrine function in the 

pancreas.  As a result it is quite conceivable that Meis2 could differentially function as 

both a differentiation determination factor and a progenitor maintenance factor depending 

on the cellular context. 

The final member of the Meis family is Meis1, which like Meis2 has been studied 

in a wide array of vertebrates.  Meis1 has an expression pattern that is conserved across 

vertebrates and closely mimics that of Meis2 expression.  Just as with Meis2, Meis1 is 

heavily expressed in the CNS with restricted expression in the forebrain, midbrain, and 

hindbrain (Capellini et al., 2008; Coy and Borycki, 2010; Maeda et al., 2002; Maeda et 
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al., 2001; Smith et al., 1997; Waskiewicz et al., 2001).  Meis1 is also expressed in the 

developing eye, both male and female reproductive tracts in mouse, in the branchial 

arches, in somites, as well as in the proximal limb bud (Bessa et al., 2008; Capellini et al., 

2008; Coy and Borycki, 2010; Crijns et al., 2007; Maeda et al., 2002; Maeda et al., 2001; 

Mercader et al., 1999; Waskiewicz et al., 2001; Williams et al., 2005). 

Mouse knockout studies have indicated that a major role for Meis1 in 

development may be in hematopoiesis and vascular patterning.  Mouse double knockouts 

exhibit morphological deformities in the brain, heart, lung, and kidney.  Furthermore this 

mutation is lethal due to little to no hematopoiesis (Hisa et al., 2004).  In addition to a 

lack of hematopoiesis, Meis1 (-/-

Outside of a role in hematopoiesis, Meis1 has been implicated in the patterning of 

the CNS.  Alterations in Meis1 expression has been shown to result in the misplacement 

of neurons in the dorsal horn of the spinal cord, as well as an inhibition of trigeminal 

ganglion precursors resulting in decreased neural crest derived neurons in the facial 

ganglion of chickens (Rottkamp et al., 2008; Yang et al., 2008).  Overexpression studies 

have indicated that Meis1 has regulatory roles in r3 and r5, in RA mediated induction of 

neural transcription factor Sox3, as well as regulating Hox gene expression and function 

in the CNS (Azcoitia et al., 2005; Huang et al., 2005; Mojsin and Stevanovic, 2010; 

Schnabel et al., 2000; Stedman et al., 2009; Waskiewicz et al., 2001).  Additionally, 

overexpression of Meis1 has been shown to induce neural and neural crest markers like: 

) embryos exhibit severe defects in their vasculature, as 

well as extreme hemorrhaging in the brain and trunk regions (Azcoitia et al., 2005; Hisa 

et al., 2004).   
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N-cam, N-tubulin, Krox20, Zic3, Fgf8, and Cyp26b1 (Maeda et al., 2002; Maeda et al., 

2001; Stedman et al., 2009).   

Meis1 has also been implicated in the development and patterning of the 

vertebrate limb and retina.  Just like Meis2, Meis1 expression is restricted to the proximal 

limb bud in mouse and chicken, and when Meis1 is ectopically expressed distally a 

reduction in distal structures has been observed (Mercader et al., 1999; Mercader et al., 

2005).  In the developing retina, Meis1, like Meis2, is suspected to function upstream of 

Pax6, and help maintain retinal progenitor populations (Heine et al., 2008). 

There are 2 additional functions that have been attributed to Meis1 that have not 

been described for any other member of the Meis family.  One of these roles is in 

controlling cell cycle regulation, specifically the Gap1 to DNA Synthesis phase 

transition, through regulation of CyclinD1 and c-myc in eye development (Bessa et al., 

2008).  While other members of the Meis family have been implicated in the control of 

eye development, none have been reported to be involved in cell cycle regulation.  

Because of the number of shared functional roles, and the amount of similarity in the 

structure of each member of the Meis family, it would not be surprising if cell cycle 

regulation is also a shared function.  This ability would explain why so many members of 

the Meis family have been demonstrated to be involved in the maintenance of progenitor 

populations, because progenitor cells are by definition proliferating.  

The second novel function that has been attributed to Meis1 is the ability to recruit 

the transcription factor MyoD to promoter regions of differentiating myoblasts and 

myotubes in culture (Berkes et al., 2004).  In this context, Meis1 binds to a binding site, 

prior to the induction of MyoD expression, in a region of high chromosomal compaction 
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(Berkes et al., 2004).  This finding, combined with the high degree of structural and 

functional conservation in the Meis family, has prompted some groups to hypothesize 

that Meis genes may function as master regulatory factors.  The idea is that Meis genes 

can interact with inactive, compacted chromosomal regions, and remodel the 

chromosomal structure.  This means that Meis genes can function as “homing beacons” 

for additional transcription factors marking promoters for activation, modulating 

differentiation (Berkes et al., 2004; Sagerstrom, 2004).   

In support of this idea the Zhang group has shown that Pax6 has evolved a novel 

function as the initial neuroectoderm determinant in primates, prior to Sox1 (Pankratz et 

al., 2007; Zhang et al., 2010).  They have also noticed that just after Pax6 induction 

Meis2 and Meis1 are upregulated as well (Pankratz et al., 2007; Zhang et al., 2010).  The 

expression of Pax6, Meis2, and Meis1 is then followed by increased expression of 

anterior neural markers.  These findings prompted the hypothesis that the novel Pax6 role 

in primate development may be tied to the significant increase in primate brain size 

(Pankratz et al., 2007; Zhang et al., 2010).  If indeed Meis genes are expressed earlier in 

neural development in primates than other vertebrates, this could have significant 

evolutionary implications.  Because Meis genes have been hypothesized to function as 

“homing beacons” for other transcription factors (Berkes et al., 2004; Sagerstrom, 2004), 

to maintain progenitor populations through cell cycle control (Bessa et al., 2008; Heine et 

al., 2008; Hisa et al., 2004), and to up-regulate anterior specific neural markers, an early 

expression of Meis genes could feasibly result in vastly increased anterior neural structure 

size in primates.  This idea is further supported by the identified correlation of species 

specific duration of Meis expression in the developing retina, and species specific retinal 
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size (Heine et al., 2008; Hisa et al., 2004).  All of these correlations point to the 

divergence of the Meis family in vertebrate evolution being necessary for the evolution of 

increasingly complex neural structures over evolutionary time. 

While much is known about the function of the different Hox gene clusters, and 

their TALE family cofactors Pbx and Meis, little is known in regards to the mechanisms 

by which Meis genes are regulated during development.  Every developmentally 

regulated gene is controlled by complex regulatory mechanisms (Davidson, 2006).  The 

simplest form of regulation is through a gene’s promoter.  The promoter is a short 

nucleotide sequence where the basic machinery for transcription is assembled.  The 

promoter is located upstream of, and in close proximity to the transcription start site, 

where it is bound by general transcription factors (Carroll et al., 2001).   

Regulating the efficiency by which the general transcription factors interact with 

the promoter is imperative to ensure that developmentally regulated genes are only 

activated according to spatial and temporal necessity.  This differential regulation is 

accomplished through short (hundreds of base pairs in length), non-coding DNA 

sequences called cis-regulatory elements (Carroll et al., 2008; Davidson, 2006).  Cis-

regulatory elements function by communicating with the promoter controlling 

transcriptional activity. This communication is facilitated by a physical interaction 

between transcription factors bound to the cis-regulatory element and the general 

transcription machinery located at the promoter (Carroll et al., 2008).  This physical 

interaction is made possible by a looping of the DNA so that the cis-regulatory element is 

in the vicinity of the promoter (Tolhuis et al., 2002).  Looping is necessary because cis-

regulatory elements can be located thousands of nucleotides away from the promoter, 
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upstream or downstream of the gene that they control, on the opposite side of a 

neighboring gene, or even within an intron of either the gene the element is controlling or 

a neighboring gene (Allende et al., 2006; Carroll et al., 2008; Davidson, 2006; Dutton et 

al., 2008; Echelard et al., 1994; Kikuta et al., 2007). 

Most developmentally regulated genes have multiple cis-regulatory elements 

associated with them (Carroll et al., 2008; Degenhardt et al., 2010; Kague et al., 2010; 

Kikuta et al., 2007; Tumpel et al., 2006)  Cis-regulatory elements can act as enhancers, 

insulators, or repressors depending on the complement of transcription factors that bind 

to the element (Allende et al., 2006; Carroll, 2005; Carroll et al., 2008; Davidson, 2006; 

Echelard et al., 1994; Tumpel et al., 2006; Woolfe et al., 2005).  They have even been 

shown to be able to control multiple genes (Duboule, 1993; Zerucha et al., 2000).  

However, the most important characteristic of cis-regulatory elements is that they 

function modularly.  This means that each individual cis-regulatory element can function 

independently to drive expression of a developmentally regulated gene in a tissue, spatial, 

and temporal specific manner, while a second can drive expression of the same gene in 

another tissue at a different time.  This modularity is the source of differential gene 

regulation during embryonic development (Carroll, 2005; Carroll et al., 2008; Davidson, 

2006; Gompel et al., 2005; Tumpel et al., 2006). 

In addition to differential regulation, cis-regulatory elements have played a major 

role during the course of evolution (Carroll, 2005; Carroll et al., 2008).  As mentioned 

earlier, the majority of genes that control embryonic development are shared among all 

bilaterians.  This means that differences in animal form are due to differences in the 

regulation of the genes that control their embryonic development, and not differences in 
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the genes that control embryonic development (Carroll, 2005; Carroll et al., 2008; King 

and Wilson, 1975).  The beauty of cis-regulatory elements is that they can mutate with 

minimal effects on the developing organism.  When a gene mutates the effects are usually 

pleiotropic and maladaptive.  The protein produced by a mutant gene will usually not 

function properly, no matter where the mutant gene is expressed.  But if a cis-regulatory 

element is mutated, the effect will alter the expression pattern of a gene, not the structure 

of the gene itself.  Because of their ability to avoid the effects of a mutation to the coding 

region of the gene, it has been hypothesized that mutating cis-regulatory elements may be 

the primary mechanism for producing genetic variation in development (Carroll, 2005; 

Carroll et al., 2008; Gompel et al., 2005; Wittkopp et al., 2004).   

Evolution by cis-regulatory modification can proceed in 2 possible ways.  First, 

according to the idea of sub-functionalization in the DDC model of evolution (Figure 3), 

following duplication of a gene, negative mutation of one or several of a single paralog’s 

associated cis-regulatory elements will place heavy selection on the maintenance of both 

genes in future generations in order to ensure that the appropriate expression pattern is 

maintained (Hurley et al., 2005; Kleinjan et al., 2008; Prince and Pickett, 2002; Taylor 

and Raes, 2004; Tumpel et al., 2006).  The second way in which cis-regulatory 

modification functions in evolution is through neo-functionalization (Figure 3).  This can 

occur after, or independent of, a duplication event.  In either circumstance, a novel cis-

regulatory element is randomly generated through mutation.  The presence of a new cis-

regulatory module can impart a novel expression pattern to the gene with which it is 

associated.  If the new expression pattern is positively beneficial to the organism, it will 
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be selected for by natural selection, and maintained in future generations (Carroll, 2005; 

Cullen et al., 2004; Gompel et al., 2005; Rebeiz et al., 2009). 

In further support of a role for cis-regulatory elements in evolution, it has been 

demonstrated that cis-regulatory elements mutate at much higher rates than the coding 

regions of the genes.  This includes the observation that novel cis-regulatory elements 

appear at much greater frequencies than do gene duplication events (Carroll, 2005; 

Gompel et al., 2005; Rebeiz et al., 2009).  So, while the DDC model of evolution 

represents a plausible and powerful mechanism for evolution, the opportunities for 

duplicate genes to influence the evolution of an organism are far less frequent than the 

evolution of novel cis-regulatory elements. This has caused some to speculate that it is 

the emergence of novel cis-regulatory elements that has given rise to the majority of 

variation observed in bilaterians (Gompel et al., 2005; Rebeiz et al., 2009).  In spite of the 

importance of cis-regulatory elements to embryonic development, and evolution, 

identifying these regulatory elements has proven difficult.   

One successful approach that is being utilized to identify cis-regulatory elements 

is phylogenetic footprinting (Allende et al., 2006; Santini et al., 2003).  Cis-regulatory 

elements are often highly conserved across species (Allende et al., 2006; Kikuta et al., 

2007; Santini et al., 2003).  Phylogenetic footprinting makes use of the conserved nature 

of cis-regulatory elements; by comparing non-coding genomic sequences from multiple 

species associated with developmental genes, Highly Conserved Noncoding Elements 

(HCNEs) can be identified (Allende et al., 2006; Kikuta et al., 2007; Muller et al., 2002; 

Navratilova et al., 2009; Santini et al., 2003; Woolfe et al., 2005).  By identifying HCNEs 

in multiple species separated by millions of years of evolution there is a high probability 
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that there is some sort of selective pressure maintaining the integrity of the HCNEs, and it 

has been shown that HCNEs often function as cis-regulatory elements (Allende et al., 

2006; Kikuta et al., 2007; Muller et al., 2002; Navratilova et al., 2009; Santini et al., 

2003; Woolfe et al., 2005; Zerucha et al., 2000). 

After identification, HCNEs are commonly characterized through transgenic 

analysis of reporter gene activity.  By linking a HCNE to a reporter gene driven by a 

minimal promoter, followed by introducing this expression cassette into an organism, the 

expression pattern of the reporter gene will recapitulate that of any gene that the HCNE 

regulates, if indeed the HCNE functions as a cis-regulatory element (Antonellis et al., 

2008; Echelard et al., 1994; Gompel et al., 2005; Linney et al., 1999; Zerucha et al., 

2000).  A gene isolated from jellyfish, coding for Green Fluorescent Protein (GFP), is 

commonly used as a reporter gene in zebrafish transgenics because it can be easily 

visualized in the optically clear zebrafish embryos (Amsterdam et al., 1995; Linney and 

Udvadia, 2004).   

Generating transgenic zebrafish originally involved injecting foreign DNA into a 

single celled embryo, and relied on spontaneous incorporation of the reporter construct 

into the genome (Stuart et al., 1988).  This method proved to be highly inefficient with 

less than a 10% success rate reported, but in recent years transgenic efficiency has been 

vastly improved by using the Tol2 transposon to facilitate genome insertion (Kawakami, 

2005; Kawakami et al., 2000; Kawakami et al., 2004; Stuart et al., 1988).  Originally 

isolated from the medaka fish Oryzias latipes, Tol2 is a stable transposase that recognizes 

specific cis sequences, and uses them to facilitate genomic translocation (Kawakami et 

al., 1998; Kawakami and Shima, 1999).  By flanking a reporter construct with Tol2 cis 
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sequences, and co-injecting the construct with mRNA that encodes the Tol2 transposase, 

up to 60% germ line transposition success rates can be achieved (Allende et al., 2006; 

Kawakami, 2005; Kawakami et al., 2004; Kotani and Kawakami, 2008; Urasaki et al., 

2006).  Since the advent of Tol2 mediated zebrafish transgenics, the system has been 

shown to function in Xenopus, chicken, and mice (Kawakami, 2007; Sumiyama et al., 

2010).  The system has been improved further by incorporating translocation sequences 

for Invitrogen’s Gateway® Multisite and Invitrogen’s Gateway® 2-way cloning systems 

(Fisher et al., 2006; Kwan et al., 2007).  By using the Gateway® cloning system the 

molecular process of building complex transposable reporter constructs and developing 

transgenics has been vastly simplified. 

As a result, by employing phylogenetic footprinting, it is possible to identify 

putative cis-regulatory elements in the form of HCNEs associated with Meis2.  Once 

identified in silico, zebrafish transgenics can then be used to assess the functionality of 

HCNEs as cis-regulatory elements in vivo. 
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MATERIALS AND METHODS 

Animal Care 

Genetically controlled zebrafish strains AB, TU, and Mitfa, as well as non-

genetically controlled wild-type strains were maintained at 27°C and on a 14-10 hr day-

night light cycle in a Marine Biotech z-mod (Aquatic Habitats) closed system.  All adult 

animals were fed Zeigler Adult Zebrafish Complete Diet dry food twice daily, and once 

daily live brine shrimp.  Water conditions were monitored daily, with pH maintained 

above 7.2, and conductivity kept between 480 and 700 mS/m.

Fish were bred by placing 1 female with 2 males, or 2 females with 3 males, of 

the same strain, in breeding chambers the evening prior to desired breeding.  Males and 

females were separated from each other by a physical divider to prevent premature 

breeding.  The divider was pulled approximately 10 minutes after the system lights turned 

on, and the fish were allowed to spawn for 20 minutes.  Upon successful spawning, the 

adults were relocated to a new aquarium, and the embryos were harvested by filtering the 

water with fine mesh to allow water flow through while catching the embryos without 

injury.  The isolated embryos were subsequently washed with Reverse Osmosis (RO) 

water, and then transferred to a glass dish where they were kept in 1X Danieau Buffer (58 

mM NaCl, 0.7 mM KCl, 0.4 mM MgSO

  Adult animals were 

housed in 1L aquaria housing no more than 6 individuals of approximately 50:50 male to 

female ratios.  Females were not housed in solitude to prevent them from becoming egg-

bound. 

4, 0.6 mM Ca(NO3)2, 5 mM HEPES pH 7.6).
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Embryos were reared in glass dishes for 5 days in a separate dry incubator at 

27°C.  At 5 dpf feeding with fine particulate dry food (Z-mod) commenced twice daily, 

and the fry were transferred to aquariums in the system where they were still housed in 

1X Danieau Buffer until 20 dpf.  During this time period 50% of the 1X Danieau Buffer 

in each aquarium was removed every 2 days with a turkey baster, and replaced with fresh 

1X Danieau Buffer to reoxygenate and prevent nitrogen toxicity. 

At 20 dpf fry were transferred from 1X Danieau Buffer to a gentle system water 

flow, gradually increasing the strength of flow over time as judged by size of the fry.  As 

the fry developed, they were fed incrementally larger dry food (ZM-100, 200, 300, and 

400 from Z-mod) twice daily according to size.  As fry grew in size they were split into 

multiple aquaria, preventing overpopulation and feeding dominance, while promoting 

growth and development.  Once individuals were large enough to be fed ZM-300 the 

developing fry began a once daily brine shrimp regiment.  Upon reaching adulthood (2-3 

months’ time) fish were maintained as described previously. 

HCNE Identification 

 HCNEs were identified by Allen Wellington and Ted Zerucha by scanning 1 

million base pairs, upstream and downstream of the human MEIS2 coding region, for 

known Hox transcription factor binding sites (ATTA) (Shen et al., 1997), making use of 

the publicly available human genome.  Upon identification of known transcription factor 

consensus binding sites, NCBI’s BLAST was used to determine if the surrounding 

sequences were conserved across species.  If BLAST hits came back as highly conserved 

among multiple species, including human, mouse, and chicken (and zebrafish and 
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pufferfish when applicable), the sequences were then used for multiple sequence 

alignments to determine identity of each HCNE.   

PCR Isolation of HCNEs from Genome 

 Each HCNE was isolated from genomic DNA by Polymerase Chain Reaction 

(PCR).  Sequence and species specific primers (Table1) were designed for each HCNE 

and used for subsequent PCR reactions.   

Table 1: PCR Primers and Sequences 
Primer Name Sequence 
Dr-m2de1-3 GCTCATTATAAGGCCGTGCATG 
Dr-m2de1-5b TATACCATGGAGGTCGGGTTTAAAGGA 
Mm-m2de1-3 ATGTCCTTGTCATCCCAG 
Mm-m2de1-5 GCTTATCACTCTGTCACC 
Mm-m2de2-3 CGACCCTAAGAAAAGCAG 
Mm-m2de2-5 GAAGGATCAGCTGGTAC 
Mm-m2de3-3 GAGATCTGTCTACTGTCC 
Mm-m2de3-5 GGCTAAGAAGAAGGCATC 
Mm-m2de4-3 TCTATCTCGATCATTCAG 
Mm-m2de4-5 CTCCGTAATTTTATCCAC 
M13 Forward GTAAAACGACGGCCAG 
M13 Reverse CAGGAAACAGCTATGAC 
5'-attB1-TOPO GGGGACAAGTTTGTACAAAAAAGCAGGCT/GAGCTCGGATCC

ACTAGTAAC 
3'-attB2-TOPO GGGGACCACTTTGTACAAGAAAGCTGGGT/TCACTATAGGGC

GAATTGGG 
5'-attB2-TOPO GGGGACCACTTTGTACAAGAAAGCTGGGT/GAGCTCGGATCC

ACTAGTAAC 
3'-attB1-TOPO GGGGACAAGTTTGTACAAAAAAGCAGGCT/TCACTATAGGGC

GAATTGGG 
 

One HCNE, (Mm m2de4), was isolated from the Mouse genome using Taq DNA 

polymerase (NEB M0273S), the primer pair mm-m2de4-3′ and mm-m2de4-5′, and 

standard Taq PCR solution concentrations and conditions [18.8 µl water, 0.5 µl dNTPs 

(10 mM), 2.5 µl Standard Taq 10X Buffer (NEB), 0.2 µl Taq Polymerase (NEB 

M0273S), 1.0 µl Mm-m2de4-5′ (50 ng/µl), 1.0 µl Mm-m2de4-3′ (50 ng/µl), and 1.0 µl 
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mouse genomic DNA (0.33 µg/µl); 1:30 min initial melt at 98.0°C, 35 cycles (30s 98.0°C 

melt, 30s 56.8°C annealing, and 2:00 min 72°C extension), 10:00 at 72°C completion and 

4°C for ∞].   

All other HCNEs (Dr m2de1, Mm m2de1, Mm m2de2, and Mm m2de3) were 

isolated from genomic DNA by gradient PCR using sequence and species specific 

primers [Dr m2de1 (dr-m2de1-3′ and dr-m2de1-5′), Mm m2de1 (mm-m2de1-3′ and mm-

m2de1-5′), Mm m2de2 (mm-m2de2-3′ and mm-m2de2-5′), and Mm m2de3 (mm-m2de3-

3′ and mm-m2de3-5′)] as well as proofreading Phusion® High-Fidelity DNA Polymerase 

(NEB M0530L).  The preceding primer pairs (Table 1) were used for each PCR with 

standard Phusion® reaction conditions [16.3 µl water, 0.5 µl dNTPs (10 mM), 1.0 µl 3' 

primer (50 ng/µl), 1.0 µl 5' primer (50 ng/µl), 5.0 µl Phusion 5x HF Buffer (NEB), 1.0 µl 

mouse or zebrafish genomic DNA (0.33 µg/µl), and 0.2 µl Phusion®

HCNE 

 DNA Polymerase 

(NEB M0530L); 1:30 min initial melt at 95.0°C, 35 cycles (30s 98.0°C melt, 30s 

annealing (Table 2), and 1:00 min 72°C extension), 10:00 at 72°C completion and 4°C 

for ∞], and a logarithmic gradient of annealing temperatures (Table 2):   

Table 2: Annealing Temperatures for Gradient PCRs 
Reaction 
Number 

Temperature °C Reaction 
Number 

Temperature °C 

Dr m2de1 1 58.9 7 64.4 
 2 59.1 8 65.7 
 3 59.7 9 66.9 
 4 60.6 10 67.9 
 5 61.8 11 68.6 
 6 63.0 12 68.9 
     
Mm m2de1 1 49.8 7 58.3 
Mm m2de2 2 50.2 8 60.2 
Mm m2de3 3 51.1 9 62.0 
 4 52.5 10 63.5 
 5 54.3 11 64.6 
 6 56.2 12 65.1 
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After each PCR reaction a 5 µl sample of each product was run on a 1% agarose 

TBE gel with Ethidium-Bromide (0.3 µg/ml) at 100 mV for 1 hr in order to determine 

reaction success.  

Cloning of HCNEs 

 Each HCNE was subsequently cloned into the pCR®2.1-TOPO® TA cloning 

vector after PCR isolation.  TA cloning takes advantage of a 5′ Adenine (A) overhang 

that Taq DNA polymerase leaves by utilizing a linearized plasmid that has a 3′ 

Thymidine (T) overhang.  By putting the compatible ends of the PCR product and the 

Plasmid together, the PCR product is ligated into the plasmid by a DNA ligase.  Phusion® 

High-Fidelity DNA Polymerase does not however leave an A overhang, so 5′ A’s must 

be added to each PCR product produced by Phusion® High-Fidelity DNA Polymerase 

before TA cloning. To add 5′ A’s to the Dr m2de1, Mm m2de1, Mm m2de2 , and Mm 

m2de3 PCR products, 5 µl of each PCR reaction performed using Phusion®

Following the addition of A’s, each HCNE PCR product was ligated into the 

pCR

 High-Fidelity 

DNA Polymerase was incubated at 72°C for 10 min with standard Taq DNA Polymerase 

and dATPs [38.5 µl water, 1.0 µl dATPs (10 mM), 5.0 µl Standard Taq 10X Buffer 

(NEB), and 0.5 µl Taq DNA Polymerase (NEB M0273S)].   

®2.1-TOPO® TA cloning vector according to standard TOPO protocol [4.0 µl PCR 

Product, 1.0 µl TOPO Salt Solution (Invitrogen), and 1.0 µl TOPO® Vector (Invitrogen 

KNM455001); incubated at Room Temperature (RT) for 10 min], followed by Heat 

Shock transformation: 50% volume of ligation is added to One Shot® TOP10 Chemically 

Competent E. coli Cells (Invitrogen C4040-10), incubated on ice for 20 min, incubated at 

42°C for 45s, incubated on ice for 2 min.  The cells were immediately transferred to 1 ml 
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SOC [20 g/L bacto-tryptone (BD 211705), 5 g/L bacto-yeast extract (BD 212750), 0.5 

g/L NaCl, 20 mM glucose], recovered at 37°C in a shaking incubator at 200 RPM for 1 

hr, plated on LB-Ampicillin (100 mg/µl) (Amp) plates with 50 µl X-Gal (20 mg/µl) for 

secondary selection, and incubated at 37°C overnight. 

After overnight incubation, 10 white colonies were screened by PCR with 

standard Taq DNA polymerase for presence of correct insert.  Each colony was sampled 

with a sterile toothpick, suspended in 25 µl RO water, vortexed, and 4.0 µl of the 

resulting solution was placed into each PCR reaction [15.8 µl water, 1.0 µl M13 Forward 

(50 ng/µl), 1.0 µl M13 Reverse (50 ng/µl), dNTPs (10 mM), 2.5 µl Standard Taq 10X 

Buffer (NEB), 0.2 µl Taq Polymerase (NEB M0273S)].  [10:00 minute initial 98.0°C cell 

lysis step, 35 cycles (30s 98.0°C melt, 30s 56.0°C annealing, and 2:00 min 72°C 

extension), 10:00 at 72°C completion and 4°C for ∞].  After each PCR reaction a 5 µl 

sample of each product was run on a 1% agarose TBE gel as previously described. 

One to three positive colonies containing an insert of the predicted size were 

picked and grown overnight in 3.0 ml LB/Amp (100 mg/ml) liquid media at 37°C and 

200 RPM. The following day minipreps were performed on each overnight culture using 

the PureYieldTM Plasmid Miniprep System (Promega A1223), eluting in RO water, to 

isolate the plasmid DNA [cultures were transferred to microcentrifuge tubes where cells 

were pelleted by centrifugation at maximum speed for 2 min; supernatant was discarded 

and cells resuspended in 200 µl of Cell Resuspension Solution by pipetting up and down; 

200 µl of Cell Lysis Solution was added and inverted to mix thoroughly; 200 µl of 

Neutralization Solution was added and inverted to mix; lysate was centrifuged at 

maximum speed for 5 min; during centrifugation, 1.0 ml of Resin was added to each 
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minicolumn/syringe complex; supernatant was transferred to the syringe and plunged 

discarding flow through; 2 ml of Column Wash solution was added to each miniprep and 

plunged discarding flow through; the minicolumn was placed in a microcentrifuge tube 

and centrifuged at maximum speed for 2 min discarding flow through; the minicolumn 

was placed in a new microcentrifuge tube and 50 µl of RO water or TE (10 mM Tris·Cl, 

1 mM EDTA pH 7.4) was added, and centrifuged at maximum speed for 20 seconds (s); 

DNA was quantified by spectrophotometry and stored at -20°C].  Each plasmid was 

screened for the presence of an insert of the appropriate size by restriction digest for 2 

hours at 37°C using the Restriction Endonuclease EcoRI [5.0 µl of plasmid DNA, 2.0 µl 

EcoRI 10X Buffer (NEB), 1.0 µl EcoRI (NEB R0101S), and 12.0 µl water].  Each digest 

screen was run on a 1% TBE gel (as previously described) in order to visualize insert 

size.  After insert size confirmation, the sequence of each insert was confirmed by Sanger 

DNA sequencing (performed by Cornell University’s Life Sciences Core Laboratories for 

using universal M13 Forward and M13 Reverse primers [Table 2]). 

Generation of Transgenic Reporter Constructs 

 Using Invitrogen’s Gateway® 2-Way cloning system modified to work with Tol2 

(Figure 4) the HCNEs, Dr m2de1 and Mm m2de1, were cloned into the plasmids 

pDONR221 and pGW_cfosGFP (Fisher et al., 2006).  pDONR221 and pGW_cfosGFP 

were transformed into One Shot® ccdB Survival™ 2 T1R Competent Cells (Invitrogen 

A10460) by heat shock (as previously described).  pDONR221 was grown on LB-

Chloramphenicol (30 mg/µl) + Kan (50 mg/µl), and pGW_cfosGFP was grown on LB-

Chloramphenicol (30 mg/µl) + Amp (100 mg/µl) (Fisher et al., 2006; Kwan et al., 2007).   
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Each HCNE was amplified from the pCR®2.1-TOPO® plasmid by PCR with 

Phusion® DNA Polymerase [16.3 µl water, 0.5 µl dNTPs (10 mM), 1.0 µl 3' primer (50 

ng/µl), 1.0 µl 5' primer (50 ng/µl), 5.0 µl Phusion 5x HF Buffer (NEB), 1.0 µl plasmid 

DNA (50 pg/µl), and 0.2 µl Phusion® DNA Polymerase (NEB M0530L); 1:30 minute 

initial melt at 95.0°C, 35 X (30s 95.0°C melt, 30s annealing (55.8°C or 62.9°C), and 1:00 

min 72°C extension), 10:00 at 72°C completion and 4°C for ∞ ], using both of the 

following 2 primer pairs individually (Table 1): 5′-attB1-TOPO and 3′-attB2-TOPO or 5′-

attB2-TOPO and 3′-attB1-TOPO.  PCR reactions using 5′ -attB1-TOPO and 3′-attB2-

TOPO were annealed at 55.8°C and PCR reactions using 5′ -attB2-TOPO and 3′-attB1-

TOPO were annealed at 62.9°C.  Each primer is sequence specific for the pCR®2.1-

TOPO® plasmid, with the 5′ primer recognizing the 5′ polycloning region and the 3′ 

primer recognizing the 3′ polycloning region.  Each primer has either an attB1 or an attB2  

site (Figure 4 and Table 3) flanking the recognition sequence so that the resulting PCR 

product contains the HCNE flanked on both sides by an attB1 and an attB2 site (Figure 4 

and Table 3).  A 5 µl sample of each PCR was run on a 1% TBE gel as previously 

described to confirm that a product of appropriate size was amplified. 
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Figure 4: Schematic Diagram of Gateway® 2-way Cloning System 
BP Reaction: The BP reaction recombines a PCR product flanked by attB1 and attB2 
cloning sites (Table 3) with the donor vector pDONR221.  The BP Clonase recognizes 
compatible sequences between attB1-attP1 and attB2-attP2, and translocates the sequence 
between attB1-attB2 into the donor vector, generating a middle entry vector. 
LR Reaction: The LR reaction recombines a middle entry vector with a destination vector 
(pGW_cfosGFP) by recombining attL1-attR1 and attL2-attR2 cloning sites (Table 3).  
The LR Clonase recognized compatible sequences between attL1-attR1 and attL2-attR2, 
and translocates the sequence between attL1-attL2 into the destination vector, generating 
an expression construct. 
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Table 3: att Cloning Site Sequences and Sources 

Att 
Site 

Sequence Source 

attP1 AAATAATGATTTTATTTTGACTGATAGTGACCTGTTCGTTGCAACAC
ATTGATGAGCAATGCTTTTTTATAATGCCAACTTTGTACAAAAAAGC
TGAACGAGAAACGTAAAATGATATAAATATCAATATATTAAATTAG
ATTTTGCATAAAAAACAGACTACATAATACTGTAAAACACAACATAT
CCAGTCACTATGAATCAACTACTTAGATGGTATTAGTGACCTGTA 

pDONR221 

attP2 AATAATGATTTTATTTTGACTGATAGTGACCTGTTCGTTGCAACAAAT
TGATAAGCAATGCTTTCTTATAATGCCAACTTTGTACAAGAAAGCTG
AACGAGAAACGTAAAATGATATAAATATCAATATATTAAATTAGATT
TTGCATAAAAAACAGACTACATAATACTGTAAAACACAACATATCC
AGTCACTATGAATCAACTACTTAGATGGTATTAGTGACCTGTA 

pDONR221 

   
attL1 CAAATAATGATTTTATTTTGACTGATAGTGACCTGTTCGTTGCAACA

MATTGATGAGCAATGCTTTTTTATAATGCCAACTTTGTACAAAAAAG
CAGGCT 

pME-Dr/Mm-
m2de1 

attL2 ACCCAGCTTTCTTGTACAAAGTTGGCATTATAAGAAAGCATTGCTTA
TCAATTTGTTGCAACGAACAGGTCACTATCAGTCAAAATAAAATCAT
TATTTG 

pME-Dr/Mm-
m2de1 

   
attR1 CAAGTTTGTACAAAAAAGTTGAACGAGAAACGTAAAATGATATAAA

TATCAATATATTAAATTAGATTTTGCATAAAAAACAGACTACATAAT
ACTGTAAAACACAACATATGCAGTCACTATGAATCAACTACTTAGAT
GGTATTAGTGACCTGTA 

pGW_cfos 
GFP 

attR2 TACAGGTCACTAATACCATCTAAGTAGTTGRTTCATAGTGACTGCAT
ATGTTGTGTTTTACAGTATTATGTAGTCTGTTTTTTATGCAAAATCTA
ATTTAATATATTGATATTTATATCATTTTACGTTTCTCGTTCAACTTTC
TTGTACAAAGTGG 

pGW_cfos 
GFP 

   
attB1 CAAGTTTGTACAAAAAAGCAGGCT 5'-attB1-

TOPO and 3'-
attB1-TOPO 

attB2 ACCCAGCTTTCTTGTACAAAGTGG 5'-attB2-
TOPO and 3'-
attB2-TOPO 

Each attB1/2 flanked HCNE PCR product was subsequently purified with the 

QIAquick PCR Purification Kit (QIAGEN 28104) according to the manufacturer 

instructions [5 volumes of Buffer PB was added to 1 Volume of reaction; 1:250 volume 

of pH indicator I was added to the reaction and inverted to mix; proceeded if solution was 

orange/yellow; the mixture was transferred to a column and spun at maximum speed for 1 

min, discarding flow through; 750 µl of Buffer PE was added to the column and spun at 
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maximum speed for 1 min, discarding flow through; the column was spun again at 

maximum speed for 2 min; the column was transferred to a new microcentrifuge tube and 

30 µl of TE (10 mM Tris·Cl, 1 mM EDTA pH 7.4) was added; the column was allowed 

to incubate at room temperature for 1 min, and spun at maximum speed for 1 min; elute 

was stored at -20°C], and concentration was then quantified by spectrophotometry.   

After each PCR product was purified they were inserted into the donor plasmid 

pDONR221, generating middle entry vectors (pME-HCNE) via a BP reaction (Figure 4), 

using the Gateway® Clonase II enzyme mix (Invitrogen 11789020) [25 fmol pDONR221, 

25 fmol PCR Product, 2.0 µl BP ClonaseTMII, to a final volume of 5.0 µl with TE (10 

mM Tris·Cl, 1 mM EDTA pH 7.4)].  The volume for each DNA component was 

calculated by determining the nanogram (ng) equivalent for each DNA component that 

corresponds to 25 fmol using the following equation, then calculating the volume based 

on known concentration:   

ng = 25 fmol · size bp · (660 fg/fmol) · (1 ng/106

Following successful transformation, 2 colonies were used to inoculate 3 ml of 

liquid LB-Kan (50 mg/µl) cultures which were grown overnight in a shaking incubator at 

37°C and 200 RPM.  The following day PureYield

 fg) 
 

The reaction was allowed to run at room temperature overnight, was then 

transformed into Chemically Competent DH5α E. coli by Heat-Shock transformation as 

previously described, and grown on LB-Kan (50 mg/µl) plates at 37°C overnight.   

TM Plasmid Minipreps (Promega 

A1223) were performed on each culture using TE (10 mM Tris·Cl, 1 mM EDTA pH 7.4) 

to elute the plasmid DNA (as previously described).  Each plasmid prep was then tested 

by restriction digestion for 1 hour at 37°C with the Restriction Endonucleases EcoRI and 
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BglII [16.0 µl water, 1.0 µl plasmid DNA, 2.0 µl 10X EcoRI Buffer (NEB), 0.5 µl BglII 

(NEB R0144S), and 0.5 µl EcoRI (NEB R0101S)], followed by visualization on a 1% 

TBE gel (as previously described) to confirm the presence of an insert of the predicted 

size. 

 Upon confirmation of pME-(HNCE) generation, the plasmid was used to transfer 

the HCNE into the destination vector pGW_cfosGFP by an LR Reaction using the LR 

ClonaseTM II Plus Enzyme Mix (Invitrogen 12538120), generating reporter constructs 

p(HCNE)-cfosGPF [10 fmol pDONR221, 10 fmol PCR Product, 2.0 µl LR ClonaseTMII 

Plus, to a final volume of 5.0 µl with TE (10 mM Tris·Cl, 1 mM EDTA pH 7.4)].  The 

volume for each DNA component was calculated by determining the nanogram (ng) 

equivelant for each DNA component that corresponds to 25 fmol using the following 

equation, then calculating the volume based on known concentration:   

ng = 10 fmol · size bp · (660 fg/fmol) · (1 ng/106

The reaction was allowed to run overnight at room temperature.  After overnight 

incubation the LR reaction was transformed into One Shot

 fg) 
 

® TOP10 Chemically 

Competent E. coli (Invitrogen C4040-10) by Heat-Shock transformation, as previously 

described.  Following successful transformation, 2 colonies were used to inoculate 3 ml 

of liquid LB-Amp (100 mg/µl) and incubated overnight in a shaking incubator at 37°C 

and 200 rpm.  The following day, PureYieldTM Plasmid Minipreps (Promega A1223) 

were performed as previously described, using RO water to elute the plasmid DNA.  

Resultant DNA was stored at -20°C.  Each plasmid was then tested by restriction 

digestion [15.0 µl water, 2.0 µl plasmid DNA, 2.0 µl 10X EcoRI Buffer (NEB), and 1.0 

µl EcoRI (NEB R0101S)] at 37°C for 1 hour with the Restriction Endonuclease EcoRI, 
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followed by visualization on a 1% TBE gel (as previously described) to confirm the 

presence of an insert of the correct size. 

 Upon successful LR reaction transformation the construct was prepared for future 

microinjection by purification using the PureYield™ Plasmid Maxiprep System 

(Promega A2392): Cells were grown in 500 ml liquid LB-Amp (100 mg/µl) overnight; 

cells were pelleted at 5000 Xg for 10 min at room temperature discarding the supernatant; 

cells were resuspended in 15 ml of Cell Resuspension Solution by gently pipetting up and 

down until no clumps were left; cells were lysed by adding 15 ml of Cell Lysis Solution 

and mixed by inversion; the reaction was allowed to run until solution is clear; 15 ml of 

Neutralization Solution was added and the solution was mixed by inverting; the lysate 

was cleared by spinning for 15 min at 14,000 Xg at room temperature; the lysate was 

filtered through an autoclaved coffee filter into 100 ml graduated cylinder, 0.5 volume of 

room temperature isopropyl alcohol (EMD PX1835-9) was added to the solution which 

was mixed by inversion; DNA was precipitated by spinning for 15 min at 14,000 Xg at 

room temperature, discarding the supernatant; the pellet was then resuspended with 2 ml 

of TE  (10 mM Tris·Cl, 1 mM EDTA pH 7.4); 10 ml of DNA Purification Resin was 

added to the solution, swirling to mix; the DNA/Resin mix was transferred to a 

maxicolumn attached to a vacuum manifold, applying maximum vacuum; 25 ml of 

Column Wash Solution was added and cleared from the column by applying a vacuum, 

not allowing vacuum to continue once dry; 5 ml of 80% ethanol was added, and cleared 

from the maxicolumn by applying max vacuum; the vacuum was allowed to continue for 

1 additional minute; the maxicolumn was transferred to a self provided 50 ml conical 

tube, centrifuged in swinging bucket rotor for 5 min at 1,300 Xg and room temperature; 
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the resin was dried by applying maximum vacuum for 5 min; 1.5 ml of preheated 65°C 

RO water was added to the maxicolumn and centrifuged for 5 min at 1,300 Xg at room 

temperature in a swinging bucket rotor; the elute was transferred to a syringe/filter 

apparatus and expelled into 1.5 ml microcentrifuge tube; the elute was spun at 14,000 Xg 

for 1 min; the supernatant was transferred to a new microcentrifuge tube and stored at      

-20°C. 

Production of Transposase mRNA 

 Transposase capped mRNA was transcribed using mMESSAGE mMACHINE® 

SP6 RNA Transcription Kit (Ambion®

 The linearized pCS2FA-transposase template was then transcribed under 

complete RNase free conditions using mMESSAGE mMACHINE

 AM1340M).  To prepare the template for 

transcription 20 µg of the plasmid pCS2FA-transposase (generously donated by Dr. Chi-

Bin Chien) was digested with the restriction endonuclease NotI (NEB R0189S) over 

night at 37°C [68.19 µl water, 12.81 µl (20 µg) plasmid DNA, 10.0 µl 10X NEB Buffer 3 

(NEB), 1.0 µl BSA, and 8.0 µl NotI (NEB R0189S)].  The enzyme was subsequently 

heat-killed by incubating the solution at 65°C for 25 min, and the linearized plasmid was 

then purified using the QIAquick PCR Purification Kit (QIAGEN 28104) as previously 

described. 

® SP6 RNA 

Transcription Kit (Ambion® AM1340M) [The 10X Reaction Buffer, 2X NTP/CAP, 

Nuclease Free Water, and Enzyme Mix were all removed and briefly spun to remove 

RNases; the Enzyme Mix and 2X NTP/CAP were placed on ice to thaw, while the 10X 

Reaction Buffer and Nuclease Free Water were left at room temperature; once thawed the 

2X NTP/CAP and 10X Reaction Buffer were vortexed until any precipitated particles 
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were completely dissolved, then the solutions were returned to previous conditions; the 

reaction was assembled in a microcentrifuge tube at room temperature in the following 

order: 0.66 µl Nuclease Free Water, 5.34 µl pCS2FA-transposase DNA (2.0 µg), 10.0 µl 

2X NTP/CAP, 2.0 µl 10X reaction Buffer, and 2.0 µl Enzyme Mix; the reaction was 

mixed by gently flicking, then spun briefly to aggregate reagents at the bottom of the 

microcentrifuge tube, and incubated in a 37°C water bath for 2 hrs; following incubation 

1.0 µl of TURBO DNase was added, the solution mixed well, and the reaction was 

incubated in a water bath at 37°C for an additional 15 min; after incubation 30.0 µl of 

Nuclease Free Water and 30.0 µl of LiCl Precipitation Solution were added, and the 

solution was incubated at -20°C for 1 hr; after incubation the reaction was centrifuged at 

4°C for 15 min at maximum speed; the supernatant was removed and the pellet was 

washed with 1.0 ml of 75% Nuclease Free Ethanol, followed by centrifugation at 4°C for 

10 min at maximum speed; the supernatant was then poured off and the tube inverted to 

gravity dry the pellet; the pellet was then resuspended in 30 µl Nuclease Free Water; 

mRNA concentration was quantified by spectrophotometry; mRNA was diluted to 175 

ng/µl, aliquoted into 10 µl aliquots, and store at -

For microinjections, zebrafish were bred as described earlier.  Embryos were 

harvested 20 min after the divider was pulled and stored in 1X Danieau Buffer.  

Microinjections were performed on 1-4 cell embryos using a Nanoliter 2000 (Model 

80°C]. 

Once aliquoted, 2.0 µl of mRNA was run on a 1%TBE gel (as previously 

described) to make sure that the product is of the appropriate size and not degraded. 

Microinjections 
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B203XVY) Microinjector mounted on a Marhauser MMJR Micromanipulator, both from 

World Precision Instruments.   

Prior to injection, needles were created by pulling 3.5 nanoliter glass capillary 

tubes (World Precision Instruments 4878) with a David Kopf Instruments Vertical Pipette 

Puller (Model 700C) set at Heat 85 and Solenoid 0.  Each needle was examined under a 

compound microscope with a micrometer to ensure that the needle point had a long taper 

with a width of 8 µm (Linney and Udvadia, 2004).  Needle points were then broken with 

a neatly occluding pair of micro-tweezers, and then back filled with mineral oil.  The 

needle was mounted in the Nanoliter 2000 Microinjector, and the mineral oil was 

expelled, followed by front loading the injection solution (125 ng Transposon Plasmid, 

175 ng Transposon RNA, 2.0 µl of 0.5% Phenol Red (Sigma P0290), and RNase-free 

water to a final volume of 5.0 µl) (Fisher et al., 2006), leaving a non-compressible 

mineral oil buffer between the injection solution and the injection rod. 

Approximately 50, 1-4 cell embryos were then lined up along a microscope slide 

sitting on the top of a bottom Petri dish and viewed under a dissecting microscope.  The 

needle was then positioned next to the line of embryos with a slight incline (~20°), and 

the Petri dish was physically moved plunging the needle into the embryo’s yolk just 

below the blastomeres.  Four nanoliters (nl) of the red Tol2 injection solution was 

injected into the yolk immediately below the blastomeres.  The process was then 

repeated, injecting between 100 and 200 embryos total per experiment.   

After injections, embryos were housed at 27°C in 1X Danieau Buffer (58 mM 

NaCl, 0.7 mM KCl, 0.4 mM MgSO4, 0.6 mM Ca(NO3)2, 5 mM HEPES pH 7.6).  Three 

hours after injection each embryo was examined for successful injection under a 
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dissecting microscope, removing any dead embryos, or embryos that did not contain 

observable quantities of phenol red.  The remaining embryos were allowed to develop 

until 24 hpf. 

 Imaging of Injected Embryos 

 Injected embryos were imaged using a Zeiss LSM 510 Confocal Microscope.  

Using the Argon laser and FITC filter to image GFP, between 8 and 15 embryos at 24 hpf 

were placed in a concave microscope slide and viewed using the 10X objective 

individually to screen for expression of GFP.   
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RESULTS 

Identification of HCNEs 

 Bioinformatic analysis of the human MEIS2 locus revealed 4 HCNEs that have 

been named Meis2 downstream element (m2de) 1-4 (Wellington and Zerucha 

unpublished).  The first HCNE, m2de1, is found approximately 220 Kb downstream of 

Meis2 in mice and humans, 120 Kb downstream of Meis2 in chicken, and 40 Kb 

downstream of Meis2.2 in zebrafish.  The other 3 HCNEs (m2de2, m2de3, and m2de4) 

are conserved in a downstream position in relation to Meis2 in all tetrapods examined to 

date (Figure 5).  The second HCNE, m2de2, is located approximately 210 Kb 

downstream of Meis2 in mice and humans, and 130 Kb downstream of Meis2 in chicken.  

The third HCNE, m2de3, is found approximately 250 Kb downstream of MEIS2 in 

humans, 260 Kb downstream of Meis2 in mice, and 150 Kb downstream of Meis2 in 

chicken.  The last HCNE, m2de4, is located approximately 440 Kb downstream of 

MEIS2 in humans, 415 Kb downstream of Meis2 in mice, and 215 Kb downstream of 

Meis2 in chicken. 

The first HCNE, m2de1, is 255 nucleotides in length and is highly conserved in 

sequence across all vertebrates examined, with 64% conservation between zebrafish and 

humans (Figure 6).  Within m2de1 there are 2 conserved Hox binding sites (ATTA / 

TAAT) (Shen et al., 1997), 1 conserved Pbx binding site (ATCA / TGAT) (Chang et al., 

1997), and 1 conserved Meis2 binding site (CTGTC / GACAG) (Shen et al., 1997).  The 

other 3 HCNEs are highly conserved in the tetrapod lineage but have not been identified 



 57 

in zebrafish to date.  The second HCNE, m2de2, is approximately 260 nucleotides in 

length, with 65% conservation between human and chicken, a conserved transcription 

factor binding site for Meis proteins (CTGTCA / TGACAG), and a Hox transcription 

factor binding site (ATTA / TAAT) (Figure 7) (Shen et al., 1997).  The third HCNE, 

m2de3, is approximately 975 nucleotides in length, 85% conserved between human and 

chicken, with 1 conserved Hox binding site (TAAT / ATTA) (Shen et al., 1997), and 1 

conserved Pbx binding site (TGAT / ATCA) (Figure 8) (Jacobs et al., 1999).  The final 

HCNE, m2de4, is approximately 520 nucleotides in length, 65% conserved between 

human and chicken, and contains 5 conserved Hox transcription factor binding sites 

(TAAT / ATTA) (Shen et al., 1997) (Figure9). 
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Figure 5: Position and Orientation of all 4 HCNEs relative to Meis2 

Positional alignment of each HCNE relative to Meis2 in Human, Mouse, Chicken, and 

the zebrafish homolog Meis2.2: Red is m2de1, Green is m2de2, Blue is m2de3, Orange is 

m2de4. 
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Ggm2de1 ttttagtgggaagataaatttaagaggagtaaattggaaaatcaaatgagggcttta 

Mmm2de1 ttttagtgggaagataaatttaaaaggagtaaattggaaaatcaaatgagggcttta 

Hsm2de1 ttctagtgggaagataaatttaagaggagtaaattggaaaatcaaatgagggcttta 

Drm2de1 cacacacaggaggtcgggtttaa-aggagtaaatctgtagctgcgtgcagggctctg 

Trm2de1 tcaatacaggaggataaatttaaaaggagtaaattggaaaatcaaatgagggcttta 

 

Ggm2de1 -gcagccagggagatttgcagagctgtctcctggtgtttgaaaggcccattcatcat 

Mmm2de1 -gcagccagggagatttgcagagctgtctccgggtgtttgaaaggcccattcatcat 

Hsm2de1 -gcagccggggagatttgcagagctgtctccgggtgtttgaaaggcccattcatcat 

Drm2de1 tgcagcggcagagatttgcggatctgtcctctagcatctaacagcctcatccatcac 

Trm2de1 ggcagccgccgagatttgcagagctgtcggccggtgtcgcagagcctcatccatcat 

 

Ggm2de1 gtcctacaagtagtcaattcctctagtatctgtaaatgttttcagatattagccaat 

Mmm2de1 gtcctacaagtagtcaattcctctagtatctgtaaatgttttcagatattagccaat 

Hsm2de1 gtcctacaagtagtcaattcctctagtatctgtaaatgttttcagatattagccaat 

Drm2de1 ggccg-caaacactcggttcctgcactgtctgtaaatgtttttagatattagccaat 

Trm2de1 gtcccacaagtagtcaattcctctagtatctgtaaatgttttcagatattagccaat 

 

Ggm2de1 ttatatgctctgagattcatcatggaaaatcagctttaccatcgtg----cattatc 

Mmm2de1 ttatatgctctgagattcatcatggaaaatcagctttaccatcgtg----cattatc 

Hsm2de1 ttatatgctctgagattcatcatggaaaatcagctttaccatcgtg----cattatc 

Drm2de1 ttatatgctctcagattcatcatggaaaatcagctttagcagcggcggcgcattatc 

Trm2de1 ttatatgctccgagattcatcatggaaaatcagctttagtggcgca----cattatc 

 

Ggm2de1 t-ccatctgaga----tgaagtttgatatatg 

Mmm2de1 t-ccatctgaga----tgaagtttgatatatg 
Hsm2de1 t-ccatctgaga----tgaagtttgatatatg 
Drm2de1 agccggcgtcgcatcgtgaagtttgatatacg 
Trm2de1 aggacctgtct-----ctccc-ttgcttcatg 

 

Figure 6: Multiple Sequence Alignment of HCNE m2de1 

Multiple sequence alignment of m2de1: Gg is Gallus Gallus (Chicken), Mm is Mus 

musculus (Mouse), Hs is Homo sapiens (Human), Dr is Danio rerio (zebrafish), Tr is 

Takifugu rubripes (Pufferfish). Sequences in red are conserved across all vertebrates, 

light blue are conserved in zebrafish and pufferfish, green are conserved in land 

vertebrates, yellow are conserved in land vertebrates and pufferfish.  Binding sites: 

Purple is a known Meis2 binding site, pink is a known Hox binding site, dark blue is a 

known Pbx binding site. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 60 

Ggm2de2 attacatacatttgac-taaataaagaaacat-catcta--ggtgtgatt-atat-aagtaag 

Mmm2de2 ataaaaagtaagtaatgtg-acctagg-actgacag-tacagctgt-atcgaagggaagaaaa 

Hsm2de2 ataaaaagaaagtaatgtg-atctagg-acagacag-taaagctgt-atctagg--aag-aaa 

 

Ggm2de2 tcctgtgtaaatttgaaattgaatgtagtaactgt-aagtatctaagaggaagtttattactc 

Mmm2de2 tcctatggaaggctgaaattgaacatggtaactgc-aattatctaaaaggaagtctattacct 

Hsm2de2 tcctatggaaggttgaaattcaatgtggtaactgccaattatctaaaaggaagtctattactt 

 

Ggm2de2 catgataaaactgtcaaaataatgactgggg-ctcctacaaatcgtgtcgaagatcaataaag 

Mmm2de2 tctgataaaactgtcaaaataatgatttggtactcccacaaattgttcagagaatcaataaag 

Hsm2de2 tatgataaaactgtcaaaataatgattgggtactcctacaaattgtacagagaatcaataaaa 

 

Ggm2de2 ttagtcc--tat---gtcatagcttgagaatttagaaattgtattttgactt-taattca-ca 

Mmm2de2 -----ccaatatttcgtcacagtttgagaatttaggaattccacttt--ctcctaagtcacaa 

Hsm2de2 -----ccaatattacgtcacagtttgagaatttaggaattccactttt-cttcttattcatga 

 

Ggm2de2 gtgcagac 

Mmm2de2 gagaatgc 
Hsm2de2 gaagacgc 
 

Figure 7: Multiple Sequence Alignment of HCNE m2de2 

Multiple sequence alignment of m2de2: Gg is Gallus Gallus (Chicken), Mm is Mus 

musculus (Mouse), Hs is Homo sapiens (Human). Sequences in green are conserved in 

land vertebrates.  Binding sites: Purple is a known Meis2 binding site, pink is a known 

Hox binding site. 
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Ggm2de3 gtgtaggtcatctccgagaagctgtgacagtgatccaaggttcctcagctgtgcagtgtacataacacaga 

Mmm2de3 gtgcgggtcatcttcgtgatgttctgacagtgagctggggctcctcagctgtgccgtgtacataacacaga 

Hsm2de3 gtgcaggtcagctccacgatgttctgacagtgatccagggctcctcagctgtgcagtgtacataacacaga 

 

Ggm2de3 tgttgggagagtcatctgtcagctatgcctctcctatggagttagagttctagggggaaaagaattcgaca 

Mmm2de3 tgtt-ggggagtcatctgtcagccatgcctctcctatggagttaaagttctagagggaaaagaatttgaca 

Hsm2de3 tgtt-ggggagtcatctgtcagccatgcctctcctatggagttaaagttctagagggaaaagaatttgaca 

 

Ggm2de3 cagtgctgtcactgttacattttcacaatggaagagcatgcaaatattcaacctcctgcttagcagtagtg 

Mmm2de3 ccctgctgtcactgttacattttcacaatagaagagcatgcaaatattgaacctcctgcttagccacagtg 

Hsm2de3 cagtgctgtcactgttacattttcacaatagaagagcatgcaaatattgaacctcctgcttagcaatagtg 

 

Ggm2de3 ccctgtctaatgtctgtgctggttagaataaaaaaatagtgggtgcatctagggctcatagatctgacaaa 

Mmm2de3 tcctgtctaatgtctgtgctggttagaataaaaaatca-tgggtgcatcttgggctctgagatccgacaaa 

Hsm2de3 ccctgtctaatgtctgtgctggttagaataaaaaatca-tgggtgcatcttgggctcagagatctgacaaa 

 

Ggm2de3 ggtcatgct----atgctgggcatttgaattggaaattgtctggacttagattttataaagctcctactgt 

Mmm2de3 ggtcatgctg---tt---gggcatttgaattggaaattgtctggacgtagattttataaagctcccactgt 

Hsm2de3 ggtcatgctatgt-t---gggcatttgaattggaaattgtctggacttagattttataaagctcccactgt 

 

Ggm2de3 tgtc---ggggaaaatttcagcagggttttgtccctagagaggcctcttaggcccttttctgtcctatgaa 

Mmm2de3 tgtgtgtggggagaatttctacagggttttgtccctggagaggcctcttaggcccttg-ctgtcctatgaa 

Hsm2de3 tgtgtgtggggagaatttcagcagggttttgtccctggagaggcctcttaggcccttttctgtcctatgaa 

 

Ggm2de3 tgaatttagatgtgagggtttct-ctgccttaaaactgttaagttcattttgcatacatccccagagagaa 

Mmm2de3 tgaatttagatgtgagggttactcctgccttaaaactgttaagttcattttgcatacatccctagagagaa 

Hsm2de3 tgaatttagatgtgagggttactcctgccttaaaactgttaagttcattttgcatacatccctagagagaa 

 

Ggm2de3 aaactggcagatgcttttgtcttggaagtgtttaaaagaaaactgcagaacaggaacaagggagagaaggg 

Mmm2de3 aaactggcagatgcttttatcttggaagtgtttaaaagaaaactgtagagcaggaacaagagaggaaaggg   

Hsm2de3 aaactggcagatgcttttgtcttggaagtgtttaaaagaaaactgcagagcaggaacaagggagaaaaggg 

 

Ggm2de3 gccctgtgtggagtcccagaacattttggaaatggccaatatgcagttttcatcagtactaaggcggggca 

Mmm2de3 gccctgtgtggagtcccagaacattttggaaatggccaatatgcagttttcatcagtatgaaggcggggtg 

Hsm2de3 gccctgtgtggagtcccagaacattttggaaatggccaatatgcagttttcatcagtatgaaggcggggtg 

 

Ggm2de3 caatatggtgcctgtagctcactggggaatatgaatgttgattaagcatactcccaggctttgaaatcctg 

Mmm2de3 caatatggtgcctgtagcccaccagggaatatgaatgttgattaagcattctcccaggctttgaaattctg 

Hsm2de3 caatatggtgcctgtagttcacgagggaatatgaatgttgattaagcatactcccaggctttgaaattctg 

 

Ggm2de3 aaagcggtgtcagaataatggatgttgagcaaatgtcaagcatttgttaatttctctgttatttggagttt 

Mmm2de3 aaagcagtgtcagaataatggatgttgagcaaatgtcaagcatttgttaatttctctgttatttggagttt 

Hsm2de3 aaagcagtgtcagaataatggatgttgagcaaatgtcaagcatttgttaatttctctgttatttggagttt   

 

Ggm2de3 atctaccatgatcaatcaaataaactagtgcttctctgttgtggcatgtgtcattgatatggtgattaggg 

Mmm2de3 atctaccatgatcaatcaaataaactagtgcttctctcttgtggcatgtgtcattgatatggtgattaggt 

Hsm2de3 atctaccatgatcaatcaaataaactagtgcttctctcttgtggcatgtgtcattgatatggtgattaggt 

 

Ggm2de3 ggctagagaggccttctgcctttttttttttttcttttttttttttttttttctgttacaggtaacagatt 

Mmm2de3 ggctagagagaccttctgcttttttttttc----------------------------caggtaacacatt 

Hsm2de3 ggctagagagaccttctgctttttttc-------------------------------caggtaacagatt 

 

Ggm2de3 acatatgaacag-ccataactttaaaaactgttggtggttggtttaatggga 

Mmm2de3 ataaatgagcagaacagagcttctaa-atttttgtttatggtttaaatttgt 

Hsm2de3 ataaacgagtag-acagagcttttcagttatttgtatattaactgaatacta 

 

Figure 8: Multiple Sequence Alignment of HCNE m2de3 

Multiple sequence alignment of m2de3: Gg is Gallus Gallus (Chicken), Mm is Mus 

musculus (Mouse), Hs is Homo sapiens (Human). Sequences in teal are conserved in land 

vertebrates.  Binding sites: Dark blue is a known Pbx binding site, pink is a known Hox 

binding site. 
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Ggm2de4 gac--tttatgatcctttcactacagtaactagcctttattctcacaatcagcatcaaccata 

Mmm2de4 tgat-tttatgattctttcgctgaagtaactagtctttattctgacaatcagcaccaatgaca 

Hsm2de4 ttgactttatgattctttcactgaagtaactagtttttatttttgcaatcagcaccaatgaca 

 

Ggm2de4 actccaagaggaaaaaaatga----ttaaaatctagagaatagtgaggagaggtttgtttgat 

Mmm2de4 attt-gggagggggtagg-gaattattaaaatctggagaaagaagaagcgctatttgt-ttga 

Hsm2de4 att--tgggagggggtggggaattattaaaatctggagaaagaagaggcactgattatttgat 

 

Ggm2de4 gtggtacaatg-cattcttgcaca—-cacttcttctgtataataggtactgaatta-caggtg 

Mmm2de4 tgtgaaatg-a-cacattcctgcacgcacttccctagtataatgggtgtcaaattcccaggaa 

Hsm2de4 gtggaac---agcacattcctccacacacttctccagtatcataggtgctggattccaggaag  

 

Ggm2de4 tttatagcctccaaagtagcacagtgaatagctgcctcaaagacataataagcaaccgatgcc 

Mmm2de4 tcgctggcttccaaag---cacagggattagttgccacagagatggaataagccaccaatatc  

Hsm2de4 tctctctggcttcca----taacacacttagttgccacagagacataataagcaaccaatgcc 

  

Ggm2de4 taaataatcattacagatactccattagcagcatctaactgtgtggcttttaaccatacaaat 

Mmm2de4 caaataattggtacacatcctccattaacaacatctaactgtgtggcttttaaccatacaaat  

Hsm2de4 caaataatcattacagatactccattaacagcatctaactgtgtggcttttaaccatacaaat 

 

Ggm2de4 tgttttttgacagcttgtaacctttccaaacagtttcctttgggcattataccacagtcagat 

Mmm2de4 tgttttgtgacagcttgtaaccttttcaaatagttttctctgggtagtacaccacactcaggt 

Hsm2de4 tgttttttgacagcttgtaaccttttcaaatactttcctttggacattacactacactcagat 

 

 

Ggm2de4 ctaattttaacttttgctttgtctataatttattattttctttggaaacacctaatgtatttc 

Mmm2de4 ctaattttaactttggctttgtctataatttatgagttttttgg-agatgtctaatatatttg  

Hsm2de4 ctaattttaacttttgctttgtctataatttatgagtttctttggagctgcataatgtatttg 

 

Ggm2de4 agtggaacggataaatccaaataa-aagataaaaaaaaaatcaattgctgttttaatctatga 

Mmm2de4 aagagaaaggatacattcaaacca-aagctaaaaacaaaaccagttaccgtattaatccataa  

Hsm2de4 aggagaaaggatacattcaaataaaaagctaaaaacaaaatcaattactgttttaatccatga 

 

Ggm2de4 aattcttgctcactgg 

Mmm2de4 acccc-tgtccaccag 

Hsm2de4 aacctttgctcactgg 

 

Figure 9: Multiple Sequence Alignment of HCNE m2de4 

Multiple sequence alignment of m2de4: Gg is Gallus Gallus (Chicken), Mm is Mus 

musculus (Mouse), Hs is Homo sapiens (Human). Sequences in yellow are conserved in 

land vertebrates.  Binding sites: Pink is a known Hox binding site. 
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Cloning of HCNEs 

Dr m2de1: 

 The HCNE m2de1 was isolated from the zebrafish (Danio rerio) genome by PCR.  

Species and sequence specific PCR primers were designed flanking m2de1 in zebrafish 

(Table 2).  The PCR was predicted to produce a product of 440 nucleotides.  This product 

is larger than the 255 bp HCNE because the primers were designed to provide a wide 

berth by flanking either side of the HCNE to ensure isolation of the entire region.  

Analysis of the Gradient PCR (Figure 10A) demonstrated bands of the appropriate size 

decreasing in intensity in the first 5 lanes, corresponding to the annealing temperatures: 

58.9°C, 59.1°C, 59.7°C, 60.6°C, and 61.8°C respectively.  Due to the decreasing nature 

of the band intensity the PCR product from lane 1, produced when annealed at 58.9°C, 

was used for cloning Dr m2de1 into the pCR
®
2.1-TOPO

®
 TA cloning vector. 

Upon cloning and transformation, 9 colonies were screened for the presence of an 

insert of the appropriate size by PCR using M13 Forward and M13 Reverse primers 

(Table 2).  A band of 641 nucleotides was expected because the primers recognized 

regions flanking the polycloning region (Figure 10D), and only colony 1 (Figure 10B) 

demonstrated a clean PCR product of appropriate size.  This colony was then grown up, a 

plasmid prep performed on this culture and the plasmid DNA digested for determination 

of insert size.  As is shown in (Figure 10D) dr m2de1-pCR2.1-TOPO has only 2 EcoRI 

cut sites, both flanking the insert site, so digestion with EcoRI should yield 2 bands: 457 

nucleotides corresponding to the insert, and 3,913 nucleotides corresponding to the 

linearized plasmid.  This is the pattern that is observed when the digests were visualized 

by agarose gel electrophoresis (Figure 10C), demonstrating that the appropriate clone is 
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present, which was confirmed by sequencing.  The colony was grown up and used for 

subsequent generation of transgenic constructs. 

 

Figure 10: Cloning of Dr m2de1 into pCR
®
2.1-TOPO

®
 

A) Gradient PCR: lanes 1-12 contain PCR products 1-12 respective to annealing 

temperatures listed in Table 2.  Lane 13 contains a 100 bp DNA ladder (NEB N3231L). 

Red arrow indicates band of desired size. 

B) Dr m2de1 colony PCR screen to identify positive ligation. Lane 1contains colony PCR 

screen of colony 8, lane 2 contains a 100 bp DNA ladder (NEB N3231L).  Yellow arrow 

indicates band of desired size. 

C)  EcoRI (NEB R0101S) digest of Dr m2de1 colony 8. Lane 1 contains digest of colony 

8, and lane 2 contains a 100 bp DNA ladder (NEB N3231L).  Blue arrow indicates band 

of desired size. 

D)  Plasmid map of the clone dr m2de1-pCR2.1-TOPO. 

 

Mm m2de1 

 After identification, m2de1 was isolated from the mouse (Mus musculus) genome.  

To do so species and sequence specific PCR primers were designed flanking m2de1 in 

zebrafish (Table 2).  The PCR was predicted to produce a product of 1,054 nucleotides.  

This product is larger than the 255 bp HCNE because the primers were designed to 

provide a wide berth by flanking either side of the HCNE to ensure isolation of the entire 

region.  Analysis of the Gradient PCR (Figure 11A) showed a consistent band of 
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appropriate size present in lanes 7-12 corresponding to annealing temperatures: 58.3°C, 

60.2°C, 62.0°C, 63.5°C, 64.6°C, and 65.1°C respectively.  The first 6 lanes do not 

contain a band of appropriate size, but do contain numerous PCR products of smaller 

length indicative of the primers binding to inappropriate sites at lower annealing 

temperatures.  As the annealing temperature increases, a band of the appropriate size 

begins to appear while indiscriminant banding disappears.  Because the PCR product in 

lane 11 (annealing temperature 64.6°C) is robust and the cleanest, the PCR product from 

lane 11 was used to clone Mm m2de1 into the pCR
®
2.1-TOPO

®
 TA cloning vector. 

 

Figure 11: Cloning of Mm m2de1 into pCR
®
2.1-TOPO

®
 

A) Gradient PCR: Lanes 1-12 contain PCR products 1-12 respective to annealing 

temperatures Table 2.  Lane 13 contains a 100 bp DNA ladder (NEB N3231L). Red 

arrow indicates band of desired size. 

B) Mm m2de1 colony PCR screen to identify positive ligation. Lanes 1-6 contain colony 

PCR screens of colonies 1-6, lane 7 contains a 100 bp DNA ladder (NEB N3231L).  

Yellow arrow indicates band of desired size. 

C)  EcoRI (NEB R0101S) digest of Mm m2de1 colonies 2, 3, 4, and 5. Lanes 1-4 contain 

digests of colonies 2-5, and lane 5 contains a 100 bp DNA ladder (NEB N3231L).  Blue 

arrow indicates band of desired size. 

D)  Plasmid map of the clone mm m2de1-pCR2.1-TOPO. 
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 Upon cloning and transformation 6 colonies were screened by PCR, using M13 

Forward and M13 Reverse primers (Table 2), for the presence of an insert of the 

appropriate size.  A band of 1,271 nucleotides was expected because the primers 

recognized regions flanking the polycloning region.  Colonies 4, 5, 6, and 7 (Figure 11B) 

all demonstrated a clean PCR product of appropriate size.  All 4 colonies were then 

grown up and digested for determination of insert size.  As is shown in Figure 11D, mm 

m2de1-pCR2.1-TOPO has only 2 EcoRI cut sites, both flanking the insert site, so 

digestion with EcoRI (NEB R0101S) should yield 2 bands: 1,054 nucleotides 

corresponding to the insert, and 3,913 corresponding to the linearized plasmid.  This is 

the pattern that is observed for all 4 colonies (Figure 11C), demonstrating that the 

appropriate clone is present, which was confirmed by sequencing.  Colony 2 was grown 

up and used for subsequent generation of transgenic constructs. 

Mm m2de2 

The m2de2 element was isolated from the mouse (Mus musculus) genome.  To do 

so species and sequence specific PCR primers were designed flanking m2de2 in mouse 

(Table 2).  The PCR was predicted to produce a product of 1,308 nucleotides.  This 

product is larger than the 260 bp HCNE because the primers were designed to provide a 

wide berth by flanking either side of the HCNE to ensure isolation of the entire region.  

Analysis of the Gradient PCR (Figure 12A) showed an increasingly intense band of 

appropriate size present in lanes 3-9 corresponding to annealing temperatures 50.2°C, 

51.1°C, 52.5°C, 54.2°C, 56.2°C, 58.3°C, and 60.2°C respectively, with a weaker solitary 

band present in lanes 10-12 corresponding to annealing temperatures 62.0°C, 63.5°C, and 

64.6°C respectively.  Lane 2 does not contain a band of appropriate size, and lanes 2-8 
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contain numerous PCR products of inappropriate size indicative of the primers binding to 

inappropriate sites at lower annealing temperatures.  As the annealing temperature 

increases, bands of inappropriate size begin to disappear, and a solitary band of 

appropriate size appears.  Because the PCR product in lane 9 (annealing temperature 

60.2°C) is robust and the cleanest, the PCR product from lane 9 was used to clone Mm 

m2de2 into the pCR
®
2.1-TOPO

®
 TA cloning vector. 

 

Figure 12: Cloning of Mm m2de2 into pCR
®
2.1-TOPO

®
 

A) Gradient PCR: Lane 1 contains a 1 kb DNA ladder (NEB N0468S), and lanes 2-13 

contain PCR products 1-12 respective to annealing temperatures listed in Table 2.  Red 

arrow indicates band of desired size. 

B) Mm m2de2 colony PCR screen to identify positive ligation. Lanes 1-9 contain colony 

PCR screens of colonies 1-9, lane 10 contains a 100 bp DNA ladder (NEB N3231L).  

Yellow arrow indicates band of desired size. 

C)  EcoRI (NEB R0101S) digest of Mm m2de2 colony 3. Lane 1 contains the digest of 

colony 3 and lane 2 contains a 100 bp DNA ladder (NEB N3231L).  Blue arrow indicates 

band of desired size. 

D)  Plasmid map of the clone mm m2de2-pCR2.1-TOPO. 
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regions flanking the polycloning region.  Colonies 3, 4, 5, and 7 (Figure 12B) all 

demonstrated a clean PCR product of appropriate size.  Colony 3 was grown up and 

digested for determination of insert size.  As is shown in Figure 12D, mm m2de2-

pCR2.1-TOPO has 3 EcoRI cut sites, 2 flanking the insert site and 1 internal site, so 

digestion with EcoRI (NEB R0101S) was predicted to yield 3 bands: approximately 700 

nucleotides and 500 nucleotides corresponding to a total insert of 1,308 nucleotides, and 

3,913 corresponding to the linearized plasmid.  This is the pattern that is observed for 

colony 3 (Figure 12C), demonstrating that the appropriate clone is present, which was 

confirmed by sequencing.  Colony 3 was grown up to be used for generation of 

transgenic constructs in the future. 

Mm m2de3 

After identification, m2de3 was isolated from the mouse (Mus Musculus) genome.  

To do so species and sequence specific PCR primers were designed flanking m2de3 in 

mouse (Table 2).  The PCR was predicted to produce a product of 1,250 nucleotides.  

This product is larger than the 975 bp HCNE because the primers were designed to 

provide a wide berth by flanking either side of the HCNE, ensuring isolation of the entire 

region.  Analysis of the Gradient PCR (Figure 13A) showed a consistent band of 

appropriate size present in lanes 4-9 corresponding to annealing temperatures: 52.5°C, 

54.3°C, 56.2°C, 58.3°C, 60.2°C, and 62.0°C respectively.  The first 3 lanes do not 

contain a band of appropriate size, but do contain numerous PCR products of smaller 

length indicative of the primers binding to inappropriate sites at lower annealing 

temperatures.  As the annealing temperature increases, the band of the appropriate size 

begins to appear, and indiscriminant banding gradually disappears.  Because the PCR 
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product in lane 9 (annealing temperature 62.0°C) is robust and the cleanest, the PCR 

product from lane 9 was used to clone Mm m2de3 into the pCR
®
2.1-TOPO

®
 TA cloning 

vector. 

 

Figure 13: Cloning of Mm m2de3 into pCR
®
2.1-TOPO

®
 

A) Gradient PCR: Lanes 1-12 contain PCR products 1-12 respective to annealing 

temperatures listed in Table 2.  Lane 13 contains a 100 bp DNA ladder (NEB N3231L). 

Red arrow indicates band of desired size. 

B) Mm m2de3 colony PCR screen to identify positive ligation. Lanes 1-9 contain colony 

PCR screens of colonies 1-9, lane 10 contains a 100 bp DNA ladder (NEB N3231L).  

Yellow arrow indicates band of desired size. 

C)  EcoRI (NEB R0101S) digest of Mm m2de3 colony 6. Lane 2 contains the digest of 

colony 6, and lane 1 contains a 100 bp DNA ladder (NEB N3231L).  Blue arrow 

indicates band of desired size. 

D)  Plasmid map of the clone mm m2de3-pCR2.1-TOPO. 
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digested for determination of insert size.  As is shown in Figure 13D, mm m2de3-

pCR2.1-TOPO has 2 EcoRI cut sites, both flanking the insert site, so digestion with 

EcoRI (NEB R0101S) should yield 2 bands: 1,250 nucleotides corresponding to the 

insert, and 3,913 corresponding to the linearized plasmid.  This is the pattern that is 

observed for colony 6 (Figure 13C), demonstrating that the appropriate clone is present, 

which was confirmed by sequencing.  Colony 6 was subsequently grown up to be used 

for future generation of transgenic constructs. 

Mm m2de4 

After identification, m2de4 was isolated from the mouse (Mus Musculus) genome.  

To do so species and sequence specific PCR primers were designed flanking m2de4 in 

mouse (Table 2).  The PCR was predicted to produce a product of 588 nucleotides.  This 

product is larger than the 520 bp HCNE because the primers were designed to provide a 

wide berth by flanking either side of the HCNE to ensure isolation of the entire region.  .  

Analysis of the PCR (Figure 14A) showed a strong band of appropriate size present when 

annealed at 56.8°C, and the PCR product was used to clone Mm m2de4 into the 

pCR
®
2.1-TOPO

®
 TA cloning vector. 

Upon cloning and transformation, 9 colonies were screened for the presence of an 

insert of the appropriate size by PCR using M13 Forward and M13 Reverse primers 

(Table 2).  A band of 641 nucleotides was expected because the primers recognized 

regions flanking the polycloning region.  Colonies 4, 5, 6, and 8 (lanes 5, 6, 7, and 9) 

(Figure 14B) all demonstrated a clean PCR product of appropriate size.  Colony 6 was 

then grown up and digested for determination of insert size.  As is shown in Figure 14D, 

mm m2de4-pCR2.1-TOPO has only 2 EcoRI cut sites, both flanking the insert site, so 
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digestion with EcoRI (NEB R0101S) should yield 2 bands: one band of 588 nucleotides 

corresponding to the insert, and 3,913 corresponding to the linearized plasmid.  This is 

the pattern that is observed for the 1 colony screened (Figure 14C), demonstrating that 

the appropriate clone is present, which was confirmed by sequencing.  That colony was 

then grown up to be used for future generation of transgenic constructs. 

Figure 14: Cloning of Mm m2de4 into pCR
®
2.1-TOPO

®
 

A) PCR: Lane 2 contains PCR product from annealing temperature 56.8°C.  Lane 1 

contains a 100 bp DNA ladder (NEB N3231L).  Red arrow indicates band of desired size. 

B) Mm m2de4 colony PCR screen to identify positive ligation. Lanes 2-10 contain 

colony PCR screens of colonies 1-9, lane 1 contains a 100 bp DNA ladder (NEB 

N3231L).  Yellow arrow indicates band of desired size. 

C)  EcoRI (NEB R0101S) digest of Mm m2de4 colonies. Lane 2 contains the digest of 

colony 6, and lane 1 contains a 100 bp DNA ladder (NEB N3231L).  Blue arrow 

indicates band of desired size. 

D)  Plasmid map of the clone mm m2de4-pCR2.1-TOPO. 

 

Generation of Reporter Constructs 
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 The Tol2 reporter construct containing Dr m2de1 in a forward orientation relative 
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A 

B 

C 

D 

   1    2   3    4   5    6   7    8   9  10 

    1            2  

 1               2  

mm m2de4-pCR2.1-TOPO 
4442 bp 

Amp(R) 

Kan(R) 

Mm m2de4 

M13 (-20) forward 

M13 reverse 

EcoRI 

EcoRI 

600 bp 
500 bp  

600 bp 

500 bp 

700 bp 

600 bp 



 72 

Gateway 2-way system (Fisher et al., 2006).  First, using the primer set 5'-attB1-TOPO 

and 3'-attB2-TOPO (Table 2), Dr m2de1 was isolated by PCR out of the plasmid dr 

m2de1-pCR2.1-TOPO (Figure 15A).  The PCR was predicted to produce a product of 

528 nucleotides, and when the PCR product was visualized by agarose gel 

electrophoresis, that is what was observed (Figure 15B).  Once the PCR product was 

cleaned with the QIAquick PCR Purification Kit (QIAGEN 28104), it was used in a BP 

reaction to generate the middle entry vector pME-Dr m2de1-F (Figure 15C).  The 

reaction was then transformed and grown on LB-Kan (50 mg/µl)
 
plates.  Because the 

middle entry vector has a ccdB gene that is removed upon successful translocation 

(Figure 4), the reaction was transformed into cells that lacked ccdB resistance.  This 

meant that any colonies that grew would not be false positives that had failed to undergo 

successful translocation.  Because of the selective measures built in it was fairly certain 

that any colony chosen would be positive for pME-Dr m2de1-F.  So 2 colonies were 

grown up for miniprep, followed by analysis via restriction digestion. 

Since both plasmids have Kan resistance, screening pME-Dr m2de1-F with EcoRI 

(NEB R0101S) and BglII (NEB R0144S) was necessary to rule out background 

transformation of residual dr m2de1-pCR2.1-TOPO from the PCR reaction.  dr m2de1-

pCR2.1-TOPO contains 2 EcoRI cut sites and 1 BglII site (Figure 15A), so if present, 

digestion will result in 3 bands of expected sizes: 2,931bp, 982bp, and 457bp.  If the 

desired plasmid pME-Dr m2de1-F is present, there will only be 2 bands (2,656bp and 

457bp) because the same EcoRI sites will be introduced into the plasmid, but pME-Dr 

m2de1-F does not contain a BglII restriction site (Figure 15C).  Upon analysis of each 

digestion, each contained 2 bands in lanes 2 and 5, while the uncut lanes (1 and 4) only 
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had 1 band (Figure 15D).  This indicated that both colonies contained the desired 

plasmid, pME-Dr m2de1-F. 

 

Figure 15: Generation of Forward Orientation Zebrafish m2de1 Reporter 

Construct 

A) Plasmid Map of dr m2de1-pCR2.1-TOPO showing att primer binding sites, EcoRI 

sites, and BglII site. 

B) PCR generating Dr m2de1-F for insertion into the middle entry vector pDONR221. 

Lane 1 contains 1 Kb ladder (NEB N0468S) and lane 2 contains 5 µl of PCR product.  

Red arrow indicates band of desired size. 

C) Plasmid map of middle entry vector pME-Dr m2de1-F showing EcoRI sites, attL1, 

and attL2 sites. 

D) Digest of pME-Dr m2de1-F with EcoRI and BglII testing for successful translocation. 

Lanes 1 and 4 contain uncut miniprep plasmid, lanes 2 and 5 contain miniprep plasmid 

cut with EcoRI and BglII, lane 3 contains 100 bp DNA ladder (NEB N3231L).  Yellow 

arrows indicate bands of desired size. 

E) Plasmid map of pDr m2de1-F-cfosGFP showing Tol2 cis sites, EcoRI sites, BglII site, 

cfos promoter, and GFP gene. 

F) Digest of pDr m2de1-F-cfosGFP with EcoRI to test for successful translocation.  Lane 

1 contains 1 Kb ladder (NEB N0468S), lane 2 contains uncut miniprep plasmid, and 3 

contains miniprep plasmid digested with EcoRI (NEB R0101S).  Blue arrow indicates 

band of desired size. 
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 After confirmation of pME-Dr m2de1-F, colony 1 was used for a subsequent LR 

reaction to clone Dr m2de1 into the reporter plasmid pGW_cfosGFP.  The LR reaction 

was then transformed and grown on LB-Amp (100 mg/µl)
 
plates.  Because the destination 

vector pGW_cfosGFP has a ccdB gene that is removed upon successful translocation 

(Figure 4), the reaction was transformed into cells that lacked ccdB resistance.  This 

meant that any colonies that grew would not be false positives that had failed to undergo 

successful translocation.   In addition, pME-Dr m2de1-F has Kan resistance (Figure 15C) 

while pDr m2de1-F-cfosGFP has Amp resistance (Figure 15E), so any colony that grew 

should not be the middle entry vector.  Because of the selective measures built in, it was 

fairly certain that any colony chosen would be positive for pDr m2de1-F-cfosGFP.  So 1 

colony was grown up for miniprep, followed by analysis via restriction digestion. 

 The resultant miniprep was digested with EcoRI (NEB R0101S), which is 

predicted to result in 2 bands: 8,200bp and 457bp.  If somehow the middle entry vector is 

present, the same digestion will result in 2 bands of 2,656bp and 457bp.  The difference 

in the size of the top band makes it easy to discern between the 2 plasmids.  The 

restriction digestion resulted in 2 bands of approximately 8,000bp and 450bp, indicating 

that the transgenic reporter construct pDr m2de1-F-cfosGFP was present.  The colony 

was maintained and used for future transgenic reactions. 

pDr m2de1-R-cfos-GFP 

The Tol2 reporter construct containing Dr m2de1 in a reverse orientation relative 

to the minimal promoter (cfos) and reporter gene GFP was generated using the Tol2-

Gateway 2-way system (Fisher et al., 2006).  First, using the primer set 5'-attB2-TOPO 

and 3'-attB1-TOPO (Table 2), Dr m2de1 was isolated by PCR from the plasmid dr 
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m2de1-pCR2.1-TOPO (Figure 16A).  The PCR was predicted to produce a product of 

528 nucleotides, which is what was observed (Figure 16B).  Once the PCR product was 

cleaned, it was used in a BP reaction to generate the middle entry vector pME-Dr m2de1-

R (Figure 16C).  The reaction was then transformed and grown on LB-Kan (50 mg/µl)
 

plates.  Because the middle entry vector has a ccdB gene that is removed upon successful 

translocation (Figure 4), the reaction was transformed into cells that lacked ccdB 

resistance.  This meant that any colonies that grew would not be false positives that had 

failed to undergo successful translocation.  Because of the selective measures built in, it 

was fairly certain that any colony chosen would be positive for pME-Dr m2de1-R, so 2 

colonies were grown up for miniprep, followed by analysis via restriction digestion. 

Since both plasmids have Kan resistance, screening pME-Dr m2de1-R with 

EcoRI (NEB R0101S) and BglII (NEB R0144S) was necessary to rule out background 

transformation of residual dr m2de1-pCR2.1-TOPO from the PCR reaction.  dr m2de1-

pCR2.1-TOPO contains 2 EcoRI sites and 1 BglII site (Figure 16A), so if present, 

digestion will result in 3 bands of expected sizes: 2,931bp, 982bp, and 457bp.  If the 

desired plasmid pME-Dr m2de1-R is present, there will only be 2 bands (2,656bp and 

457bp) because the same EcoRI sites will be introduced into the plasmid, but pME-Dr 

m2de1-R does not contain a BglII restriction site (Figure 16C).  Upon analysis of each 

digestion, each contained 2 bands in lanes 1 and 3 (Figure 16D).  This indicated that both 

colonies had the desired plasmid, pME-Dr m2de1-R. 
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Figure 16: Generation of Reverse Orientation Zebrafish m2de1 Reporter Construct 

A) Plasmid Map of dr m2de1-pCR2.1-TOPO showing att primer binding sites, EcoRI 

sites, and BglII site. 

B) PCR generating Dr m2de1-R for insertion into the middle entry vector pDONR221. 

Lane 1 contains 100 bp DNA ladder (NEB N3231L) and lane 2 contains 5 µl of PCR 

product. Red arrow indicates band of desired size. 

C) Plasmid map of middle entry vector pME-Dr m2de1-R showing EcoRI sites, attL1 and 

attL2 sites. 

D) Digest of pME-Dr m2de1-R with EcoRI and BglII testing for successful translocation.  

Lanes 1 and 3 contain miniprep plasmid cut with EcoRI and BglII, lane 2 contains 1 Kb 

ladder (NEB N0468S).  Yellow arrows indicate bands of desired size. 

E) Plasmid map of pDr m2de1-R-cfosGFP showing Tol2 cis sites, EcoRI sites, BglII site, 

cfos promoter, and GFP gene. 

F) Digest of pDr m2de1-R-cfosGFP with EcoRI to test for successful translocation.  Lane 

2 contains 100 bp DNA ladder (NEB N3231L), lane 1 contains miniprep plasmids from 

the colony digested with EcoRI (NEB R0101S).  Blue arrow indicates band of desired 

size. 
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(Figure 4), the reaction was transformed into cells that lacked ccdB resistance.  This 

meant that any colonies that grew would not be false positives that had failed to undergo 

successful translocation.   In addition, pME-Dr m2de1-R has Kan resistance (Figure 15C) 

while pDr m2de1-R-cfosGFP has Amp resistance (Figure 15E), so any colony that grew 

should not be the middle entry vector.  Because of the selective measures built in, it was 

fairly certain that any colony chosen would be positive for pDr m2de1-R-cfosGFP, so 1 

colony was grown up for miniprep, followed by analysis via restriction digestion. 

The resultant miniprep was digested with EcoRI (NEB R0101S) which is 

predicted to result in 2 bands (8,200bp and 457bp).  If somehow the middle entry vector 

is present the same digestion will result in 2 bands (2,656bp and 457bp).  The difference 

in the size of the top band makes it easy to discern between the 2 plasmids.   The 

restriction digestion resulted in 2 bands of approximately 8,000bp and 450bp, indicating 

that the transgenic reporter construct pDr m2de1-R-cfosGFP was present.  The colony 

was maintained to be used for future transgenic reactions. 

pMm m2de1-F-cfos-GFP 

The Tol2 reporter construct containing Mm m2de1 in a forward orientation 

relative to the minimal promoter (cfos) and reporter gene GFP was created using the 

Tol2-Gateway 2-way system (Fisher et al., 2006).  First, using the primer set 5'-attB1-

TOPO and 3'-attB2-TOPO, Mm m2de1 was isolated by PCR out of the plasmid mm 

m2de1-pCR2.1-TOPO (Figure 17A).  The PCR was predicted to produce a product of 

1,193 nucleotides, and when the PCR product was viewed by agarose gel electrophoresis, 

that is what was observed (Figure 17B).  Once the PCR product was cleaned it was used 

in a BP reaction to generate the middle entry vector pME-Mm m2de1-F (Figure 17C).  
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The reaction was then transformed and grown on LB-Kan (50 mg/µl)
 
plates.  Because the 

middle entry vector has a ccdB gene that is removed upon successful translocation 

(Figure 4), the reaction was transformed into cells that lacked ccdB resistance.  This 

meant that any colonies that grew would not be false positives that had failed to undergo 

successful translocation.    Because of the selective measures built in it was fairly certain 

that any colony chosen would be positive for pME-Mm m2de1-F.  So 1 colony was 

grown up for miniprep, followed by analysis via restriction digestion. 

Since both plasmids have Kan resistance, screening pME-Mm m2de1-F with 

EcoRI (NEB R0101S) and BglII (NEB R0144S) was necessary to rule out background 

transformation of residual Mm m2de1-pCR2.1-TOPO from the PCR reaction.  mm 

m2de1-pCR2.1-TOPO contains 2 EcoRI cut sites and 1 BglII site (Figure 17A), so if 

present, digestion will result in 3 bands of expected sizes: 2,931bp, 982bp, and 1,054 bp.  

If the desired plasmid pME-Mm m2de1-F is present, there will only be 2 bands (2,656bp 

and 1,054bp) because the same EcoRI sites will be introduced into the plasmid, but pME-

Mm m2de1-F does not contain a BglII restriction site (Figure 17C).  Upon analysis of the 

digestion, the reaction resulted in 2 bands in lane 1 (Figure 17D).  This indicated that 

both colonies had the desired plasmid pME-Mm m2de1-F.  
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Figure 17: Generation of Forward Orientation Mouse m2de1 Reporter Construct 

A) Plasmid Map of mm m2de1-pCR2.1-TOPO showing att primer binding sites, EcoRI 

sites, and BglII site. 

B) PCR generating Mm m2de1-F for insertion into the middle entry vector pDONR221. 

Lane 1 contains 100 bp DNA ladder (NEB N3231L) and lane 2 contains 5 µl of PCR 

product.  Red arrow indicates band of desired size. 

C) Plasmid map of middle entry vector pME-Mm m2de1-F showing EcoRI sites, attL1 

and attL2 sites. 

D) Digest of pME-Mm m2de1-F with EcoRI and BglII testing for successful 

translocation. Lane 1 contains miniprep plasmid cut with EcoRI and BglII, lane 2 

contains 100 bp DNA ladder (NEB N3231L).  Yellow arrow indicates band of desired 

size. 

E) Plasmid map of pMm m2de1-F-cfosGFP showing Tol2 cis sites, EcoRI sites, BglII 

site, cfos promoter, and GFP gene. 

F) Digest of pMm m2de1-F-cfosGFP with EcoRI to test for successful translocation.  

Lane 1 contains 1 Kb ladder (NEB N0468S), lane 2 contains miniprep plasmid digested 

with EcoRI (NEB R0101S).  Blue arrows indicate bands of desired size. 
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reaction was then transformed and grown on LB-Amp (100 mg/µl) plates.  Because the 

destination vector pGW_cfosGFP has a ccdB gene that is removed upon successful 

translocation (Figure 4), the reaction was transformed into cells that lacked ccdB 

resistance.  This meant that any colonies that grew would not be false positives that had 

failed to undergo successful translocation.  In addition, pME- Mm m2de1-F has Kan 

resistance (Figure 17C) while pMm m2de1-F-cfosGFP has Amp resistance (Figure 17E), 

so any colony that grew should not be the middle entry vector.  Because of the selective 

measures built in, it was fairly certain that any colony chosen would be positive for pMm 

m2de1-F-cfosGFP, so 1 colony was grown up for miniprep, followed by analysis via 

restriction digestion. 

 The resultant plasmid DNA was digested with EcoRI (NEB R0101S), which was 

predicted to result in 2 bands (8,200bp and 1,054bp).  If somehow the middle entry vector 

is present the same digestion will result in 2 bands (2,656bp and 1,054bp).   The 

difference in the size of the top band makes it easy to discern between the 2 plasmids.  

The restriction digestion resulted in 2 bands of approximately 8,000bp and 1,054bp, 

indicating that the transgenic reporter construct pMm m2de1-F-cfosGFP was present.  

The colony was maintained to be used for future transgenic reactions. 

pMm m2de1-R-cfos-GFP 

The Tol2 reporter construct containing Mm m2de1 in a reverse orientation 

relative to the minimal promoter (cfos) and reporter gene GFP was created using the 

Tol2-Gateway 2-way system (Fisher et al., 2006).  First, using the primer set 5'-attB2-

TOPO and 3'-attB1-TOPO (Table 2), Mm m2de1 was isolated by PCR out of the plasmid 

mm m2de1-pCR2.1-TOPO (Figure 18A).  The PCR was predicted to produce a product 



 81 

of 1,193 nucleotides, and when the PCR product was visualized by agarose gel 

electrophoresis, that is what was observed (Figure 18B).  Once the PCR product was 

cleaned, it was used in a BP reaction to generate the middle entry vector pME-Mm 

m2de1-R (Figure 18C).  The reaction was then transformed and grown on LB-Kan (50 

mg/µl)
 
plates.  Because the middle entry vector has a ccdB gene that is removed upon 

successful translocation (Figure 4), the reaction was transformed into cells that lacked 

ccdB resistance.  This meant that any colonies that grew would not be false positives that 

had failed to undergo successful translocation.  Because of the selective measures built in 

it was fairly certain that any colony chosen would be positive for pME-Dr m2de1-R, so 1 

colony was grown up for miniprep, followed by analysis via restriction digestion. 

Since both plasmids have Kan resistance, screening pME-Mm m2de1-R with 

EcoRI (NEB R0101S) and BglII (NEB R0144S) was necessary to rule out background 

transformation of residual mm m2de1-pCR2.1-TOPO from the PCR reaction.  mm 

m2de1-pCR2.1-TOPO contains 2 EcoRI sites and 1 BglII site (Figure 18A), so if present, 

digestion will result in 3 bands of expected sizes: 2,931bp, 982bp, and 1,054bp.  If the 

desired plasmid pME-Mm m2de1-R is present, there will only be 2 bands (2,656 bp and 

1,054 bp) because the same EcoRI sites will be introduced into the plasmid, but pME-

Mm m2de1-R does not contain a BglII restriction site (Figure 18C).  Upon analysis of the 

digestion, the reaction resulted in 2 bands in lane 2 (Figure 18D).  This indicated that 

both colonies had the desired plasmid pME-Mm m2de1-R. 
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Figure 18: Generation of Reverse Orientation Mouse m2de1 Reporter Construct 

A) Plasmid Map of mm m2de1-pCR2.1-TOPO showing att primer binding sites, EcoRI 

sites, and BglII site. 

B) PCR generating Mm m2de1-R for insertion into the middle entry vector pDONR221. 

Lane 1 contains 5 µl of PCR product and lane 2 contains 100 bp DNA ladder (NEB 

N3231L).  Red arrow indicates band of desired size. 

C) Plasmid map of middle entry vector pME-Mm m2de1-R showing EcoRI sites, attL1 

and attL2 sites. 

D) Digest of pME-Mm m2de1-R with EcoRI and BglII testing for successful 

translocation. Lane 1 contains 1 Kb ladder (NEB N0468S) and lane 2 contains miniprep 

plasmid cut with EcoRI and BglII.  Yellow arrow indicates band of desired size. 

E) Plasmid map of pMm m2de1-R-cfosGFP showing Tol2 cis sites, EcoRI sites, BglII 

site, cfos promoter, and GFP gene. 

F) Digest of pMm m2de1-R-cfosGFP with EcoRI to test for successful translocation.  

Lane 1 contains 1 Kb ladder (NEB N0468S); lane 2 contains miniprep plasmid digested 

with EcoRI (NEB R0101S).  Blue arrows indicate bands of desired size. 
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destination vector pGW_cfosGFP has a ccdB gene that is removed upon successful 

translocation (Figure 4), the reaction was transformed into cells that lacked ccdB 

resistance.  This meant that any colonies that grew would not be false positives that had 

failed to undergo successful translocation.  In addition, pME-Mm m2de1-R has Kan 

resistance (Figure 18C) while pMm m2de1-R-cfosGFP has Amp resistance (Figure 18E), 

so any colony that grew should not be the middle entry vector.  Because of the selective 

measures built in, it was fairly certain that any colony chosen would be positive for pMm 

m2de1-R-cfosGFP, so 1 colony was grown up for miniprep, followed by analysis via 

restriction digestion. 

 The resultant minipreps were digested with EcoRI (NEB R0101S), which was 

predicted to result in 2 bands (8,200bp and 1,054bp).  If somehow the middle entry vector 

is present, the same digestion will result in 2 bands (2,656bp and 1,054bp).  The 

difference in the size of the top band makes it easy to discern between the 2 plasmids.  

The restriction digestion resulted in 2 bands of approximately 8,000bp and 1,054bp, 

indicating that the transgenic reporter construct pMm m2de1-R-cfosGFP was present.  

The colony was maintained to be used for future transgenic reactions. 

Production of Transposase mRNA 

 To produce the Transposase mRNA for microinjections, the plasmid was first 

linearized with NotI (NEB R0189S), which would leave a linear construct.  This was 

done so that when the SP6 promoter binds and begins transcribing the template the 

polymerase will run out of template just after the SV40 PolyA tail ends (Figure 19A).  

This reaction was performed in duplicate to ensure success.  After digestion, each trial 

was run on a gel to confirm that digestion was complete, because any residual circular 
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plasmid will inhibit the transcription reaction.  As is seen in Figure 19B, both digests 

resulted in only 1 solitary band of approximately 6,000bp, the size of the plasmid. 

 

Figure 19: Production of Transposase mRNA for Injection 

A)  Plasmid map of pCS2-FA-Transposase showing SP6 Promoter, Transposase coding 

region, SV40 Poly A Tail, and NotI restriction site (NEB R0189S). 

B)  Gel showing the digestion of pCS2-FA-Transposase with NotI (NEB R0189S).  Lane 

1 contains undigested plasmid, lanes 2 and 3 contain individual linearization reactions, 

lane 4 contains 1 Kb ladder (NEB N0468S).  Red arrow indicates band of desired size. 

C)  Gel showing the product of mMESSAGE mMACHINE
®

 SP6 RNA Transcription Kit 

(Ambion
®
 AM1340M) reaction.  Lane 1 contains reaction product and lane 2 contains 

ssRNA ladder (NEB N0362).  Yellow arrow indicates band of desired size. 
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the reaction yielded enough mRNA to proceed with microinjections.  If the smear is due 

to degradation, the product may have been degraded while running on the gel. 
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Microinjections 

To determine if m2de1 was able to direct expression of a transgene consistent 

with the known expression pattern of Meis2, one to four cell embryos were injected with 

either a Tol2 positive control construct that has a known expression pattern, or pDR 

m2de1-F-cfos-GFP.  A minimum of 668 embryos (Table 4) were injected with a positive 

control construct [125ng Transposon Plasmid, 175 ng Transposon RNA, 2.0 µl of 0.5% 

Phenol Red (Sigma P0290), and RNase-free water to a final volume of 5.0 µl] (Fisher et 

al., 2006), and screened for GFP expression.  A total of 0 embryos exhibited reporter 

expression (Table 4).  A minimum of 761 embryos (Table 4) were injected with pDR 

m2de1-F-cfos-GFP [125ng Transposon Plasmid, 175 ng Transposon RNA, 2.0 µl of 

0.5% Phenol Red (Sigma P0290), and RNase-free water to a final volume of 5.0 µl] 

(Fisher et al., 2006), and screened for expression of GFP.  A total of 0 embryos exhibited 

expression of the reporter gene (Table 4). 

Table 4: Results of Microinjections 

 Amount Observed Expression Pattern 

Positive Control Injections 668 0 

pDr m2de1-F-cfos-GFP Injections 761 0 
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DISCUSSION 

 All 4 HCNEs (m2de1, m2de2, m2de3, and m2de4) exhibit all of the stereotypical 

signs of being cis-regulatory elements.  All 4 are highly conserved across multiple 

species in sequence and orientation.  All 4 HCNEs contain highly conserved transcription 

factor binding consensus sequences.  It is also known that HCNEs oftentimes function as 

cis-regulatory elements when associated with developmentally regulated genes (Allende 

et al., 2006; Fisher et al., 2006; Kikuta et al., 2007; Woolfe et al., 2005; Zerucha et al., 

2000).  In addition, it is not unusual to find cis-regulatory elements shared between 

multiple genes as previously mentioned (Duboule, 1993; Zerucha et al., 2000), or for a 

cis-regulatory element to be controlling one gene, but located within an adjacent gene 

that is a bystander gene (Kikuta et al., 2007).   

It has also been shown that linkage between developmentally important genes and 

bystander genes can be maintained over evolutionary time between zebrafish and 

humans.  This linkage is often preserved by the presence of cis-regulatory elements that 

control the developmentally regulated gene that are located either within introns or 

outside of the bystander gene (Kikuta et al., 2007).  These systems comprise what are 

called Gene Regulatory Blocks (GRB), and the presence of a GRB has been shown to be 

dependant on the presence of the cis-regulatory elements.   

This is significant because a novel gene has been identified downstream of Meis2.  

This gene, temporarily named M2LG (Meis2 Linked Gene) is linked downstream of



 87 

Meis2 in vertebrates from zebrafish to humans in an inverted convergently transcribed 

orientation. In addition, M2LG appears to be expressed in a pattern that is similar to 

Meis2 (Carpenter et al. unpublished).  Of the 4 HCNEs that have been described, 2 

(m2de1 and m2de2) are located within an intron of M2LG, and 2 (m2de3 and m2de4) lie 

outside and upstream of its coding region.  The two most parsimonious explanations for 

the linkage between Meis2 and M2LG are that the 2 genes are either sharing some or all 

of the regulatory elements, or that M2LG is a bystander gene and its location adjacent to 

Meis2 is being maintained because if the 2 genes were to be segregated from each other 

by translocation the regulatory mechanisms controlling Meis2 would be lost causing it to 

lose function.  Such a mutation, as has been previously described, would most likely be 

lethal.  So because of the genomic organization of Meis2, M2LG, and all 4 HCNEs, the 

system appears to comprise a GRB, adding some support to the hypothesis that the 

HCNEs function as cis-regulatory elements.   

 While all of the bioinformatic information indicates that each HCNE functions as 

a cis-regulatory element, to definitively prove it requires a functional analysis of each 

HCNE in a model organism.  To do so in zebrafish calls for transgenic analysis, but 

unfortunately all attempts to perform transgenics to this point have been unsuccessful.  

After optimization of the injection process through mock injections, a total of 1,429 

embryos were injected with transgenic constructs.  A total of 668 embryos were injected 

with positive control constructs, and 761 with the experimental expression construct pDr 

m2de1-F-cfosGFP.  Not a single embryo injected with an experimental construct 

exhibited restricted expression patterns of the reporter gene.  Just like the experimental 

injections, not a single embryo injected with a positive control construct exhibited 
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reporter expression.  This result, while it does not prove that m2de1 functions as a cis-

regulatory element, does also not rule out the possibility that m2de1 does function as a 

cis-regulatory element.   

The injection process is a delicate one, and there are several steps where errors 

could have been made and should be evaluated.  The Tol2 system has been shown to be 

extremely efficient, with the construct pGW_cfosGFP showing restricted, non-mosaic, 

reporter expression in 10-20% of injected embryos that survive the injection process 

(Fisher et al., 2006).  It has also been shown that the Tol2 system can achieve successful 

germline transmission rates with transgenic F1 generations from up to 70% of injected 

embryos that exhibit reporter expression (Kawakami, 2007).  The published high rate of 

success, when compared to the failure of 1,429 injected embryos to exhibit reporter 

expression, indicates a problem with the process that we are using.   

The process involves using the reporter constructs that have been created to 

generate transgenic lines in order to quantify the reporter gene’s expression pattern.  To 

do so requires injecting each reporter construct (individually) along with Transposase 

RNA into a 1-cell embryo.  The RNA is translated and the resulting transposase initiates 

insertion of the Tol2 reporter construct into the embryo’s genome after injection.  As 

subsequent cell divisions occur, each daughter cell would contain the insertion resulting 

in homogenous transgenics (Linney et al., 1999; Linney and Udvadia, 2004; Stuart et al., 

1988; Xu, 1999).   

 In order to inject anything into a single cell extremely small needles are required.  

As the injection process began, it quickly became apparent that the appropriate working 

knowledge of how to inject into zebrafish embryos was absent.  After a trip to the Prince 
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laboratory at the University of Chicago first hand knowledge of the injection process was 

gained. 

Upon returning, the embryos were lined up on a Petri dish using a microscope 

slide to function as a brace for the embryos.  The small gap between the dish and slide 

would serve to remove excess water through capillary action.  The process of moving the 

Petri dish instead of the needle in order to orient the embryos into the appropriate 

position for injection was also initiated.  Successful injections into the embryos soon 

followed these changes, at which point it was noticed that the vast majority of embryos 

that were injected died.  There were many possibilities as to what the problem was: 

needles, mineral oil, or toxic solution.  Changes to the puller settings were made to make 

sure that the needles had a long taper, a width of no more than 8 µm, all the while making 

sure to break the tips leaving a beveled edge (Linney and Udvadia, 2004).  Following 

these changes, a marked improvement was noticed, but there was still a significant level 

of lethality.  Subsequently, mock injections (518) were performed while altering types of 

water and varying the volume of 0.5% Phenol Red (Sigma P0290) in order to optimize 

the physical injection process.   

In addition to tinkering with the injection process, post-injection care of the 

embryos was reevaluated in order to maximize survival rates.  It was discovered that 

survival rates were drastically increased if, at approximately 3 hours following injection, 

embryos that did not survive the injection process, as well as embryos that did not show 

red blastomeres, were discarded. 

After optimization of the injection process, both experimental (761 embryos) and 

positive control (668 embryos) constructs were injected, and the embryos screened for 
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reporter expression.  There were no successful transformants however.  During this time 

period, the concentrations of the expression construct, mRNA, and Phenol Red were 

varied to determine if there was an optimum concentration that varied from those that had 

been published.  But there was no variation of concentration that resulted in positive 

transgenics.   

Because component concentration is not the causal factor resulting in a lack of 

transgenesis, the problem must be either the quality of the components, or with some 

aspect of the procedure that has not yet been addressed.  There are a couple of 

possibilities that have yet to be tested: mRNA integrity and the supercoiled nature of the 

expression construct.  The integrity of the mRNA is of paramount importance, because 

integrity of the mRNA is necessary in order for the construct to be translated, making the 

transposase available to facilitate the translocation of the Tol2 construct into the 

embryo’s genome.  Even though the mRNA product showed a strong band, it is entirely 

possible that the reaction did not produce a product that will be effective.  The 

mMESSAGE mMACHINE® SP6 RNA Transcription Kit (Ambion®

The second component issue that should be addressed is the supercoiled nature of 

the expression constructs.  The ability for a foreign fragment of DNA to incorporate into 

the genome is contingent on the construct being extremely pure and of the highest 

 AM1340M) has 

been known to occasionally produce products that lack a 5′ cap , or for some other reason 

yield non-functional products (Linney, personal communication).  To circumvent this, it 

may be optimal to perform multiple (5) reactions simultaneously, pooling all of the 

products into 1.  This would help to maximize the probability of the presence of a 

functional mRNA product. 
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integrity (Chi-Bin Chien, personal communication).  This is why maxi prep DNA is used, 

as opposed to miniprep DNA.  However, it still remains possible that for some reason the 

maxi prep DNA does not have the necessary characteristics for the desired purposes.  If 

DNA integrity is indeed the issue, there are several potential causes.  Two examples 

would be that the maxiprep system used may be old or defective, or that the cells that the 

constructs are maintained in could be altering the construct in some way, such as by 

methylating the DNA.  One way to circumvent these problems would be to use a cesium 

chloride DNA extraction protocol to ensure DNA integrity and purity.   

Additional sources of trouble could be the setup itself.  The microinjector that was 

used has never been published in zebrafish transgenic experiments.  The microinjector 

uses mechanical movement of a rod to expel the injection solution.  Most microinjectors 

utilize a pulse of gas to expel the injection solution.  So utilizing the unpublished 

mechanical microinjector is a novel approach.  Using gas backpressure to expel the 

solution, it is necessary to visually estimate the volume of solution injected into the 

embryo.  By using the mechanical rod apparatus it is possible to precisely control the 

volume of solution injected.  However, the system requires a mineral oil buffer region to 

be present between the rod and the injection solution, which no other system requires.  

This mineral oil layer is necessary to provide a noncompressable buffer between 

the rod and the solution, ensuring even and constant back pressure.  In addition, mineral 

oil will not cause rusting, minimizing the risk of oxidative damage to the rod itself.  The 

problem with using mineral oil is that there is an additional variable added to the system 

that has not been addressed in the literature.  The presence of mineral oil could be 

somehow altering the integrity of the expression construct, or mRNA.  The mineral oil is 
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also not RNase free, so its presence could be introducing RNases leading to degradation 

of the mRNA, which would inhibit the Tol2 translocation reaction. 

Given all of the potential areas for potential error that have been addressed, 

combined with the lack success of a positive control construct, it is highly likely that the 

issue with the procedure has not been addressed yet.  In addition, the lack of reporter 

expression is not indicative of the HCNE not being a cis-regulatory element.  Given the 

high degree of conservation in sequence and orientation, the presence of known 

transcription factor binding sites, and the existence of a putative GRB, the supporting 

bioinformatic evidence lends to a high probability that each HCNE functions as a cis-

regulatory element.  So, further analysis of each HCNE through transgenics should be 

carried out to definitively quantify the functionality of each HCNE as a cis-regulatory 

element.  The procedure will need to be further optimized, and it may be desirable to look 

into alternative methods for quantifying functionality of putative cis-regulatory elements 

in the future. 
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GLOSSARY 

List of Abbreviations 

A/P   Anterior/Posterior 
Amp   Ampicillin  
Antp   Antennapedia 
CNS   Central Nervous System 
DDC   Duplication-Degeneration-Complementation 
dpf    Days Postfertilization 
Dr   Danio rerio (zebrafish) 
EMSA   Electrophoretic-Mobility Shift Assays 
Evo-Devo  Evolutionary Developmental Biology 
GFP   Green Fluorescent Protein 
Gg   Gallus gallus (chicken) 
GRB   Gene Regulatory Block 
H4   Histone 4 
HCNE   Highly Conserved Noncoding Element 
HD   Homeodomain 
HDac   Histone Deacetylase 
hpf   Hours Postfertilization 
Hs   Homo sapiens (human) 
Hth   Homothorax 
Kan   Kanamycin  
M1   Meis Domain 1 
M2   Meis Domain 2 
m2de   Meis2 Downstream Element 
M2LG   Meis2 Linked Gene 
Mm   Mus musculus (mouse) 
MRCA   Most Recent Common Ancestor 
NLS   Nuclear Localization Signal  
P/D   Proximal/Distal 
PCR    Polymerase Chain Reaction 
PG   Paralog Group 
pGW   Plasmid Gateway 
pME   Plasmid Middle Entry  
RA   Retinoic Acid 
r   Rhombomere 
RO   Reverse Osmosis 
TALE   Three Amino acid Loop Extension 
Tr   Takifugu rubripes (pufferfish) 



 94 

REFERENCES 
 

Abu-Shaar, M., and Mann, R.S. (1998). Generation of multiple antagonistic domains 
along the proximodistal axis during Drosophila leg development. Development 125, 
3821-3830. 
 
Abu-Shaar, M., Ryoo, H.D., and Mann, R.S. (1999). Control of the nuclear localization 
of Extradenticle by competing nuclear import and export signals. Genes Dev 13, 935-
945. 
 
Ahn, D., and Ho, R.K. (2008). Tri-phasic expression of posterior Hox genes during 
development of pectoral fins in zebrafish: implications for the evolution of vertebrate 
paired appendages. Dev Biol 322, 220-233. 
 
Allende, M.L., Manzanares, M., Tena, J.J., Feijoo, C.G., and Gomez-Skarmeta, J.L. 
(2006). Cracking the genome's second code: enhancer detection by combined 
phylogenetic footprinting and transgenic fish and frog embryos. Methods 39, 212-219. 
 
Amores, A., Force, A., Yan, Y.L., Joly, L., Amemiya, C., Fritz, A., Ho, R.K., Langeland, 
J., Prince, V., Wang, Y.L., et al. (1998). Zebrafish hox clusters and vertebrate genome 
evolution. Science 282, 1711-1714. 
 
Amsterdam, A., Lin, S., and Hopkins, N. (1995). The Aequorea victoria green fluorescent 
protein can be used as a reporter in live zebrafish embryos. Dev Biol 171, 123-129. 
 
Antonellis, A., Huynh, J.L., Lee-Lin, S.Q., Vinton, R.M., Renaud, G., Loftus, S.K., 
Elliot, G., Wolfsberg, T.G., Green, E.D., McCallion, A.S., et al. (2008). Identification of 
neural crest and glial enhancers at the mouse Sox10 locus through transgenesis in 
zebrafish. PLoS Genet 4, e1000174. 
 
Arata, Y., Kouike, H., Zhang, Y., Herman, M.A., Okano, H., and Sawa, H. (2006). Wnt 
signaling and a Hox protein cooperatively regulate psa-3/Meis to determine daughter cell 
fate after asymmetric cell division in C. elegans. Dev Cell 11, 105-115. 
 
Azcoitia, V., Aracil, M., Martinez, A.C., and Torres, M. (2005). The homeodomain 
protein Meis1 is essential for definitive hematopoiesis and vascular patterning in the 
mouse embryo. Dev Biol 280, 307-320. 
 
Berkes, C.A., Bergstrom, D.A., Penn, B.H., Seaver, K.J., Knoepfler, P.S., and Tapscott, 
S.J. (2004). Pbx marks genes for activation by MyoD indicating a role for a 
homeodomain protein in establishing myogenic potential. Mol Cell 14, 465-477.



 95 

Berthelsen, J., Kilstrup-Nielsen, C., Blasi, F., Mavilio, F., and Zappavigna, V. (1999). 
The subcellular localization of PBX1 and EXD proteins depends on nuclear import and 
export signals and is modulated by association with PREP1 and HTH. Genes Dev 13, 
946-953. 
 
Berthelsen, J., Zappavigna, V., Ferretti, E., Mavilio, F., and Blasi, F. (1998a). The novel 
homeoprotein Prep1 modulates Pbx-Hox protein cooperativity. EMBO J 17, 1434-1445. 
Berthelsen, J., Zappavigna, V., Mavilio, F., and Blasi, F. (1998b). Prep1, a novel 
functional partner of Pbx proteins. EMBO J 17, 1423-1433. 
 
Bessa, J., Tavares, M.J., Santos, J., Kikuta, H., Laplante, M., Becker, T.S., Gomez-
Skarmeta, J.L., and Casares, F. (2008). meis1 regulates cyclin D1 and c-myc expression, 
and controls the proliferation of the multipotent cells in the early developing zebrafish 
eye. Development 135, 799-803. 
 
Biemar, F., Devos, N., Martial, J.A., Driever, W., and Peers, B. (2001). Cloning and 
expression of the TALE superclass homeobox Meis2 gene during zebrafish embryonic 
development. Mech Dev 109, 427-431. 
 
Bumsted-O'Brien, K.M., Hendrickson, A., Haverkamp, S., Ashery-Padan, R., and 
Schulte, D. (2007). Expression of the homeodomain transcription factor Meis2 in the 
embryonic and postnatal retina. J Comp Neurol 505, 58-72. 
 
Burglin, T.R. (1997). Analysis of TALE superclass homeobox genes (MEIS, PBC, 
KNOX, Iroquois, TGIF) reveals a novel domain conserved between plants and animals. 
Nucleic Acids Res 25, 4173-4180. 
 
Burglin, T.R. (1998). The PBC domain contains a MEINOX domain: coevolution of Hox 
and TALE homeobox genes? Dev Genes Evol 208, 113-116. 
 
Capdevila, J., Tsukui, T., Rodriquez Esteban, C., Zappavigna, V., and Izpisua Belmonte, 
J.C. (1999). Control of vertebrate limb outgrowth by the proximal factor Meis2 and distal 
antagonism of BMPs by Gremlin. Mol Cell 4, 839-849. 
 
Capellini, T.D., Zewdu, R., Di Giacomo, G., Asciutti, S., Kugler, J.E., Di Gregorio, A., 
and Selleri, L. (2008). Pbx1/Pbx2 govern axial skeletal development by controlling 
Polycomb and Hox in mesoderm and Pax1/Pax9 in sclerotome. Dev Biol 321, 500-514. 
 
Carroll, S.B. (2005a). Endless forms most beautiful : the new science of evo devo and the 
making of the animal kingdom, 1st edn (New York: Norton). 
 
Carroll, S.B. (2005b). Evolution at two levels: on genes and form. PLoS Biol 3, e245. 
 
Carroll, S.B. (2006). The making of the fittest : DNA and the ultimate forensic record of 
evolution, 1st edn (New York, N.Y.: W.W. Norton & Co.). 
 



 96 

Carroll, S.B. (2009). Remarkable creatures : epic adventures in the search for the origins 
of species (Boston, Houghton Mifflin Harcourt). 
 
Carroll, S.B., Grenier, J.K., and Weatherbee, S.D. (2001). From DNA to diversity : 
molecular genetics and the evolution of animal design (Malden, Mass.: Blackwell 
Science). 
 
Carroll, S.B., Prud'homme, B., and Gompel, N. (2008). Regulating evolution. Sci Am 
298, 60-67. 
 
Cecconi, F., Proetzel, G., Alvarez-Bolado, G., Jay, D., and Gruss, P. (1997). Expression 
of Meis2, a Knotted-related murine homeobox gene, indicates a role in the differentiation 
of the forebrain and the somitic mesoderm. Dev Dyn 210, 184-190. 
 
Chang, C.P., Jacobs, Y., Nakamura, T., Jenkins, N.A., Copeland, N.G., and Cleary, M.L. 
(1997). Meis proteins are major in vivo DNA binding partners for wild-type but not 
chimeric Pbx proteins. Mol Cell Biol 17, 5679-5687. 
 
Choe, S.K., Lu, P., Nakamura, M., Lee, J., and Sagerstrom, C.G. (2009). Meis cofactors 
control HDAC and CBP accessibility at Hox-regulated promoters during zebrafish 
embryogenesis. Dev Cell 17, 561-567. 
 
Choe, S.K., and Sagerstrom, C.G. (2004). Paralog group 1 hox genes regulate 
rhombomere 5/6 expression of vhnf1, a repressor of rostral hindbrain fates, in a meis-
dependent manner. Dev Biol 271, 350-361. 
 
Choe, S.K., and Sagerstrom, C.G. (2005). Variable Meis-dependence among paralog 
group-1 Hox proteins. Biochem Biophys Res Commun 331, 1384-1391. 
 
Choe, S.K., Vlachakis, N., and Sagerstrom, C.G. (2002). Meis family proteins are 
required for hindbrain development in the zebrafish. Development 129, 585-595. 
 
Conte, I., Carrella, S., Avellino, R., Karali, M., Marco-Ferreres, R., Bovolenta, P., and 
Banfi, S. (2010). miR-204 is required for lens and retinal development via Meis2 
targeting. Proc Natl Acad Sci U S A 107, 15491-15496. 
 
Coy, S.E., and Borycki, A.G. (2010). Expression analysis of TALE family transcription 
factors during avian development. Dev Dyn 239, 1234-1245. 
 
Crijns, A.P., de Graeff, P., Geerts, D., Ten Hoor, K.A., Hollema, H., van der Sluis, T., 
Hofstra, R.M., de Bock, G.H., de Jong, S., van der Zee, A.G., et al. (2007). MEIS and 
PBX homeobox proteins in ovarian cancer. Eur J Cancer 43, 2495-2505. 
 
Cullen, M.E., Dellow, K.A., and Barton, P.J. (2004). Structure and regulation of human 
troponin genes. Mol Cell Biochem 263, 81-90. 
 



97 

 

Davidson, E.H. (2006). The regulatory genome : gene regulatory networks in 

development and evolution (Burlington, Mass.: Academic Press, Inc.). 

 

Deflorian, G., Tiso, N., Ferretti, E., Meyer, D., Blasi, F., Bortolussi, M., and Argenton, F. 

(2004). Prep1.1 has essential genetic functions in hindbrain development and cranial 

neural crest cell differentiation. Development 131, 613-627. 

 

Degenhardt, K.R., Milewski, R.C., Padmanabhan, A., Miller, M., Singh, M.K., Lang, D., 

Engleka, K.A., Wu, M., Li, J., Zhou, D., et al. (2010). Distinct enhancers at the Pax3 

locus can function redundantly to regulate neural tube and neural crest expressions. Dev 

Biol 339, 519-527. 

 

Delporte, F.M., Pasque, V., Devos, N., Manfroid, I., Voz, M.L., Motte, P., Biemar, F., 

Martial, J.A., and Peers, B. (2008). Expression of zebrafish pax6b in pancreas is 

regulated by two enhancers containing highly conserved cis-elements bound by PDX1, 

PBX and PREP factors. BMC Dev Biol 8, 53. 

 

Deschamps, J., and van Nes, J. (2005). Developmental regulation of the Hox genes 

during axial morphogenesis in the mouse. Development 132, 2931-2942. 

 

Dibner, C., Elias, S., and Frank, D. (2001). XMeis3 protein activity is required for proper 

hindbrain patterning in Xenopus laevis embryos. Development 128, 3415-3426. 

 

diIorio, P., Alexa, K., Choe, S.K., Etheridge, L., and Sagerstrom, C.G. (2007). TALE-

family homeodomain proteins regulate endodermal sonic hedgehog expression and 

pattern the anterior endoderm. Dev Biol 304, 221-231. 

 

Dobzhansky, T. (1949). Towards a modern synthesis. Evolution 3, 376. 

 

Duboule, D. (1993). The function of Hox genes in the morphogenesis of the vertebrate 

limb. Ann Genet 36, 24-29. 

 

Duboule, D. (2007). The rise and fall of Hox gene clusters. Development 134, 2549-

2560. 

 

Dutton, J.R., Antonellis, A., Carney, T.J., Rodrigues, F.S., Pavan, W.J., Ward, A., and 

Kelsh, R.N. (2008). An evolutionarily conserved intronic region controls the 

spatiotemporal expression of the transcription factor Sox10. BMC Dev Biol 8, 105. 

 

Echelard, Y., Vassileva, G., and McMahon, A.P. (1994). Cis-acting regulatory sequences 

governing Wnt-1 expression in the developing mouse CNS. Development 120, 2213-

2224. 

 

 



 98 

Ferretti, E., Marshall, H., Popperl, H., Maconochie, M., Krumlauf, R., and Blasi, F. 
(2000). Segmental expression of Hoxb2 in r4 requires two separate sites that integrate 
cooperative interactions between Prep1, Pbx and Hox proteins. Development 127, 155-
166. 
 
Ferretti, E., Villaescusa, J.C., Di Rosa, P., Fernandez-Diaz, L.C., Longobardi, E., 
Mazzieri, R., Miccio, A., Micali, N., Selleri, L., Ferrari, G., et al. (2006). Hypomorphic 
mutation of the TALE gene Prep1 (pKnox1) causes a major reduction of Pbx and Meis 
proteins and a pleiotropic embryonic phenotype. Mol Cell Biol 26, 5650-5662. 
 
Finnerty, J.R., and Martindale, M.Q. (1999). Ancient origins of axial patterning genes: 
Hox genes and ParaHox genes in the Cnidaria. Evol Dev 1, 16-23. 
 
Fisher, S., Grice, E.A., Vinton, R.M., Bessling, S.L., Urasaki, A., Kawakami, K., and 
McCallion, A.S. (2006). Evaluating the biological relevance of putative enhancers using 
Tol2 transposon-mediated transgenesis in zebrafish. Nat Protoc 1, 1297-1305. 
 
Fognani, C., Kilstrup-Nielsen, C., Berthelsen, J., Ferretti, E., Zappavigna, V., and Blasi, 
F. (2002). Characterization of PREP2, a paralog of PREP1, which defines a novel sub-
family of the MEINOX TALE homeodomain transcription factors. Nucleic Acids Res 30, 
2043-2051. 
 
Force, A., Lynch, M., Pickett, F.B., Amores, A., Yan, Y.L., and Postlethwait, J. (1999). 
Preservation of duplicate genes by complementary, degenerative mutations. Genetics 
151, 1531-1545. 
 
Fujino, T., Yamazaki, Y., Largaespada, D.A., Jenkins, N.A., Copeland, N.G., Hirokawa, 
K., and Nakamura, T. (2001). Inhibition of myeloid differentiation by Hoxa9, Hoxb8, and 
Meis homeobox genes. Exp Hematol 29, 856-863. 
 
Gehring, W.J. (1987). Homeo boxes in the study of development. Science 236, 1245-
1252. 
 
Gendron-Maguire, M., Mallo, M., Zhang, M., and Gridley, T. (1993). Hoxa-2 mutant 
mice exhibit homeotic transformation of skeletal elements derived from cranial neural 
crest. Cell 75, 1317-1331. 
 
Gompel, N., Prud'homme, B., Wittkopp, P.J., Kassner, V.A., and Carroll, S.B. (2005). 
Chance caught on the wing: cis-regulatory evolution and the origin of pigment patterns in 
Drosophila. Nature 433, 481-487. 
 
Goulding, M.D., and Gruss, P. (1989). The homeobox in vertebrate development. Curr 
Opin Cell Biol 1, 1088-1093. 
 



 99 

Heine, P., Dohle, E., Bumsted-O'Brien, K., Engelkamp, D., and Schulte, D. (2008). 
Evidence for an evolutionary conserved role of homothorax/Meis1/2 during vertebrate 
retina development. Development 135, 805-811. 
 
Hisa, T., Spence, S.E., Rachel, R.A., Fujita, M., Nakamura, T., Ward, J.M., Devor-
Henneman, D.E., Saiki, Y., Kutsuna, H., Tessarollo, L., et al. (2004). Hematopoietic, 
angiogenic and eye defects in Meis1 mutant animals. EMBO J 23, 450-459. 
 
Huang, H., Rastegar, M., Bodner, C., Goh, S.L., Rambaldi, I., and Featherstone, M. 
(2005). MEIS C termini harbor transcriptional activation domains that respond to cell 
signaling. J Biol Chem 280, 10119-10127. 
 
Hurley, I., Hale, M.E., and Prince, V.E. (2005). Duplication events and the evolution of 
segmental identity. Evol Dev 7, 556-567. 
 
Huxley, J. (1943). Evolution : the modern synthesis (New York: London, Harper & 
brothers). 
 
Inbal, A., Halachmi, N., Dibner, C., Frank, D., and Salzberg, A. (2001). Genetic evidence 
for the transcriptional-activating function of Homothorax during adult fly development. 
Development 128, 3405-3413. 
 
Jacobs, Y., Schnabel, C.A., and Cleary, M.L. (1999). Trimeric association of Hox and 
TALE homeodomain proteins mediates Hoxb2 hindbrain enhancer activity. Mol Cell 
Biol 19, 5134-5142. 
 
Kague, E., Bessling, S.L., Lee, J., Hu, G., Passos-Bueno, M.R., and Fisher, S. (2010). 
Functionally conserved cis-regulatory elements of COL18A1 identified through zebrafish 
transgenesis. Dev Biol 337, 496-505. 
 
Kawakami, K. (2005). Transposon tools and methods in zebrafish. Dev Dyn 234, 244-
254. 
 
Kawakami, K. (2007). Tol2: a versatile gene transfer vector in vertebrates. Genome Biol 
8 Suppl 1, S7. 
 
Kawakami, K., Koga, A., Hori, H., and Shima, A. (1998). Excision of the tol2 
transposable element of the medaka fish, Oryzias latipes, in zebrafish, Danio rerio. Gene 
225, 17-22. 
 
Kawakami, K., and Shima, A. (1999). Identification of the Tol2 transposase of the 
medaka fish Oryzias latipes that catalyzes excision of a nonautonomous Tol2 element in 
zebrafish Danio rerio. Gene 240, 239-244. 
 
 



 100 

Kawakami, K., Shima, A., and Kawakami, N. (2000). Identification of a functional 
transposase of the Tol2 element, an Ac-like element from the Japanese medaka fish, and 
its transposition in the zebrafish germ lineage. Proc Natl Acad Sci U S A 97, 11403-
11408. 
 
Kawakami, K., Takeda, H., Kawakami, N., Kobayashi, M., Matsuda, N., and Mishina, M. 
(2004). A transposon-mediated gene trap approach identifies developmentally regulated 
genes in zebrafish. Dev Cell 7, 133-144. 
 
Kessel, M. (1992). Respecification of vertebral identities by retinoic acid. Development 
115, 487-501. 
 
Kessel, M., and Gruss, P. (1991). Homeotic transformations of murine vertebrae and 
concomitant alteration of Hox codes induced by retinoic acid. Cell 67, 89-104. 
 
Kikuta, H., Laplante, M., Navratilova, P., Komisarczuk, A.Z., Engstrom, P.G., Fredman, 
D., Akalin, A., Caccamo, M., Sealy, I., Howe, K., et al. (2007). Genomic regulatory 
blocks encompass multiple neighboring genes and maintain conserved synteny in 
vertebrates. Genome Res 17, 545-555. 
 
Kilstrup-Nielsen, C., Alessio, M., and Zappavigna, V. (2003). PBX1 nuclear export is 
regulated independently of PBX-MEINOX interaction by PKA phosphorylation of the 
PBC-B domain. EMBO J 22, 89-99. 
 
King, M.C., and Wilson, A.C. (1975). Evolution at two levels in humans and 
chimpanzees. Science 188, 107-116. 
 
Kleinjan, D.A., Bancewicz, R.M., Gautier, P., Dahm, R., Schonthaler, H.B., Damante, G., 
Seawright, A., Hever, A.M., Yeyati, P.L., van Heyningen, V., et al. (2008). 
Subfunctionalization of duplicated zebrafish pax6 genes by cis-regulatory divergence. 
PLoS Genet 4, e29. 
 
Knoepfler, P.S., Bergstrom, D.A., Uetsuki, T., Dac-Korytko, I., Sun, Y.H., Wright, W.E., 
Tapscott, S.J., and Kamps, M.P. (1999). A conserved motif N-terminal to the DNA-
binding domains of myogenic bHLH transcription factors mediates cooperative DNA 
binding with pbx-Meis1/Prep1. Nucleic Acids Res 27, 3752-3761. 
 
Knoepfler, P.S., Calvo, K.R., Chen, H., Antonarakis, S.E., and Kamps, M.P. (1997). 
Meis1 and pKnox1 bind DNA cooperatively with Pbx1 utilizing an interaction surface 
disrupted in oncoprotein E2a-Pbx1. Proc Natl Acad Sci U S A 94, 14553-14558. 
 
Knoepfler, P.S., and Kamps, M.P. (1997). The Pbx family of proteins is strongly 
upregulated by a post-transcriptional mechanism during retinoic acid-induced 
differentiation of P19 embryonal carcinoma cells. Mech Dev 63, 5-14. 
 



 101 

Kobayashi, M., Fujioka, M., Tolkunova, E.N., Deka, D., Abu-Shaar, M., Mann, R.S., and 
Jaynes, J.B. (2003). Engrailed cooperates with extradenticle and homothorax to repress 
target genes in Drosophila. Development 130, 741-751. 
 
Kotani, T., and Kawakami, K. (2008). Misty somites, a maternal effect gene identified by 
transposon-mediated insertional mutagenesis in zebrafish that is essential for the somite 
boundary maintenance. Dev Biol 316, 383-396. 
 
Kumar, A., Gates, P.B., and Brockes, J.P. (2007). Positional identity of adult stem cells in 
salamander limb regeneration. C R Biol 330, 485-490. 
 
Kurant, E., Pai, C.Y., Sharf, R., Halachmi, N., Sun, Y.H., and Salzberg, A. (1998). 
Dorsotonals/homothorax, the Drosophila homologue of meis1, interacts with 
extradenticle in patterning of the embryonic PNS. Development 125, 1037-1048. 
 
Kwan, K.M., Fujimoto, E., Grabher, C., Mangum, B.D., Hardy, M.E., Campbell, D.S., 
Parant, J.M., Yost, H.J., Kanki, J.P., and Chien, C.B. (2007). The Tol2kit: a multisite 
gateway-based construction kit for Tol2 transposon transgenesis constructs. Dev Dyn 
236, 3088-3099. 
 
Lemons, D., and McGinnis, W. (2006). Genomic evolution of Hox gene clusters. Science 
313, 1918-1922. 
 
Linney, E., Hardison, N.L., Lonze, B.E., Lyons, S., and DiNapoli, L. (1999). Transgene 
expression in zebrafish: A comparison of retroviral-vector and DNA-injection 
approaches. Dev Biol 213, 207-216. 
 
Linney, E., and Udvadia, A.J. (2004). Construction and detection of fluorescent, germline 
transgenic zebrafish. Methods Mol Biol 254, 271-288. 
 
Liu, Y., MacDonald, R.J., and Swift, G.H. (2001). DNA binding and transcriptional 
activation by a PDX1.PBX1b.MEIS2b trimer and cooperation with a pancreas-specific 
basic helix-loop-helix complex. J Biol Chem 276, 17985-17993. 
 
Maeda, R., Ishimura, A., Mood, K., Park, E.K., Buchberg, A.M., and Daar, I.O. (2002). 
Xpbx1b and Xmeis1b play a collaborative role in hindbrain and neural crest gene 
expression in Xenopus embryos. Proc Natl Acad Sci U S A 99, 5448-5453. 
 
Maeda, R., Mood, K., Jones, T.L., Aruga, J., Buchberg, A.M., and Daar, I.O. (2001). 
Xmeis1, a protooncogene involved in specifying neural crest cell fate in Xenopus 
embryos. Oncogene 20, 1329-1342. 
 
Mamo, A., Krosl, J., Kroon, E., Bijl, J., Thompson, A., Mayotte, N., Girard, S., Bisaillon, 
R., Beslu, N., Featherstone, M., et al. (2006). Molecular dissection of Meis1 reveals 2 
domains required for leukemia induction and a key role for Hoxa gene activation. Blood 
108, 622-629. 



 102 

McGinnis, W., Garber, R.L., Wirz, J., Kuroiwa, A., and Gehring, W.J. (1984a). A 
homologous protein-coding sequence in Drosophila homeotic genes and its conservation 
in other metazoans. Cell 37, 403-408. 
 
McGinnis, W., Levine, M.S., Hafen, E., Kuroiwa, A., and Gehring, W.J. (1984b). A 
conserved DNA sequence in homoeotic genes of the Drosophila Antennapedia and 
bithorax complexes. Nature 308, 428-433. 
 
Mercader, N., Leonardo, E., Azpiazu, N., Serrano, A., Morata, G., Martinez, C., and 
Torres, M. (1999). Conserved regulation of proximodistal limb axis development by 
Meis1/Hth. Nature 402, 425-429. 
 
Mercader, N., Tanaka, E.M., and Torres, M. (2005). Proximodistal identity during 
vertebrate limb regeneration is regulated by Meis homeodomain proteins. Development 
132, 4131-4142. 
 
Milech, N., Gottardo, N.G., Ford, J., D'Souza, D., Greene, W.K., Kees, U.R., and Watt, 
P.M. (2010). MEIS proteins as partners of the TLX1/HOX11 oncoprotein. Leuk Res 34, 
358-363. 
 
Moens, C.B., and Selleri, L. (2006). Hox cofactors in vertebrate development. Dev Biol 
291, 193-206. 
 
Mojsin, M., and Stevanovic, M. (2010). PBX1 and MEIS1 up-regulate SOX3 gene 
expression by direct interaction with a consensus binding site within the basal promoter 
region. Biochem J 425, 107-116. 
 
Moskow, J.J., Bullrich, F., Huebner, K., Daar, I.O., and Buchberg, A.M. (1995). Meis1, a 
PBX1-related homeobox gene involved in myeloid leukemia in BXH-2 mice. Mol Cell 
Biol 15, 5434-5443. 
 
Muller, F., Blader, P., and Strahle, U. (2002). Search for enhancers: teleost models in 
comparative genomic and transgenic analysis of cis regulatory elements. Bioessays 24, 
564-572. 
 
Nakamura, T., Jenkins, N.A., and Copeland, N.G. (1996). Identification of a new family 
of Pbx-related homeobox genes. Oncogene 13, 2235-2242. 
 
Nam, J., and Nei, M. (2005). Evolutionary change of the numbers of homeobox genes in 
bilateral animals. Mol Biol Evol 22, 2386-2394. 
 
Navratilova, P., Fredman, D., Hawkins, T.A., Turner, K., Lenhard, B., and Becker, T.S. 
(2009). Systematic human/zebrafish comparative identification of cis-regulatory activity 
around vertebrate developmental transcription factor genes. Dev Biol 327, 526-540. 
 



 103 

Ogishima, S., and Tanaka, H. (2007). Missing link in the evolution of Hox clusters. Gene 
387, 21-30. 
 
Otting, G., Qian, Y.Q., Billeter, M., Muller, M., Affolter, M., Gehring, W.J., and 
Wuthrich, K. (1990). Protein--DNA contacts in the structure of a homeodomain--DNA 
complex determined by nuclear magnetic resonance spectroscopy in solution. EMBO J 9, 
3085-3092. 
 
Oulad-Abdelghani, M., Chazaud, C., Bouillet, P., Sapin, V., Chambon, P., and Dolle, P. 
(1997). Meis2, a novel mouse Pbx-related homeobox gene induced by retinoic acid 
during differentiation of P19 embryonal carcinoma cells. Dev Dyn 210, 173-183. 
 
Pai, C.Y., Kuo, T.S., Jaw, T.J., Kurant, E., Chen, C.T., Bessarab, D.A., Salzberg, A., and 
Sun, Y.H. (1998). The Homothorax homeoprotein activates the nuclear localization of 
another homeoprotein, extradenticle, and suppresses eye development in Drosophila. 
Genes Dev 12, 435-446. 
 
Pankratz, M.T., Li, X.J., Lavaute, T.M., Lyons, E.A., Chen, X., and Zhang, S.C. (2007). 
Directed neural differentiation of human embryonic stem cells via an obligated primitive 
anterior stage. Stem Cells 25, 1511-1520. 
 
Prince, V.E., Joly, L., Ekker, M., and Ho, R.K. (1998). Zebrafish hox genes: genomic 
organization and modified colinear expression patterns in the trunk. Development 125, 
407-420. 
 
Prince, V.E., and Pickett, F.B. (2002). Splitting pairs: the diverging fates of duplicated 
genes. Nat Rev Genet 3, 827-837. 
 
Prohaska, S.J., and Stadler, P.F. (2004). The duplication of the Hox gene clusters in 
teleost fishes. Theory Biosci 123, 89-110. 
 
Prpic, N.M., Janssen, R., Wigand, B., Klingler, M., and Damen, W.G. (2003). Gene 
expression in spider appendages reveals reversal of exd/hth spatial specificity, altered leg 
gap gene dynamics, and suggests divergent distal morphogen signaling. Dev Biol 264, 
119-140. 
 
Rebeiz, M., Pool, J.E., Kassner, V.A., Aquadro, C.F., and Carroll, S.B. (2009). Stepwise 
modification of a modular enhancer underlies adaptation in a Drosophila population. 
Science 326, 1663-1667. 
 
Rieckhof, G.E., Casares, F., Ryoo, H.D., Abu-Shaar, M., and Mann, R.S. (1997). Nuclear 
translocation of extradenticle requires homothorax, which encodes an extradenticle-
related homeodomain protein. Cell 91, 171-183. 
 



 104 

Rottkamp, C.A., Lobur, K.J., Wladyka, C.L., Lucky, A.K., and O'Gorman, S. (2008). 
Pbx3 is required for normal locomotion and dorsal horn development. Dev Biol 314, 23-
39. 
 
Ryoo, H.D., and Mann, R.S. (1999). The control of trunk Hox specificity and activity by 
Extradenticle. Genes Dev 13, 1704-1716. 
 
Ryoo, H.D., Marty, T., Casares, F., Affolter, M., and Mann, R.S. (1999). Regulation of 
Hox target genes by a DNA bound Homothorax/Hox/Extradenticle complex. 
Development 126, 5137-5148. 
 
Sagerstrom, C.G. (2004). PbX marks the spot. Dev Cell 6, 737-738. 
 
Sagerstrom, C.G., Kao, B.A., Lane, M.E., and Sive, H. (2001). Isolation and 
characterization of posteriorly restricted genes in the zebrafish gastrula. Dev Dyn 220, 
402-408. 
 
Saleh, M., Huang, H., Green, N.C., and Featherstone, M.S. (2000). A conformational 
change in PBX1A is necessary for its nuclear localization. Exp Cell Res 260, 105-115. 
 
Salsi, V., Vigano, M.A., Cocchiarella, F., Mantovani, R., and Zappavigna, V. (2008). 
Hoxd13 binds in vivo and regulates the expression of genes acting in key pathways for 
early limb and skeletal patterning. Dev Biol 317, 497-507. 
 
Salzberg, A., Elias, S., Nachaliel, N., Bonstein, L., Henig, C., and Frank, D. (1999). A 
Meis family protein caudalizes neural cell fates in Xenopus. Mech Dev 80, 3-13. 
 
Santini, S., Boore, J.L., and Meyer, A. (2003). Evolutionary conservation of regulatory 
elements in vertebrate Hox gene clusters. Genome Res 13, 1111-1122. 
 
Sarno, J.L., Kliman, H.J., and Taylor, H.S. (2005). HOXA10, Pbx2, and Meis1 protein 
expression in the human endometrium: formation of multimeric complexes on HOXA10 
target genes. J Clin Endocrinol Metab 90, 522-528. 
 
Schnabel, C.A., Jacobs, Y., and Cleary, M.L. (2000). HoxA9-mediated immortalization 
of myeloid progenitors requires functional interactions with TALE cofactors Pbx and 
Meis. Oncogene 19, 608-616. 
 
Schneuwly, S., Klemenz, R., and Gehring, W.J. (1987). Redesigning the body plan of 
Drosophila by ectopic expression of the homoeotic gene Antennapedia. Nature 325, 816-
818. 
 
Scott, M.P., and Weiner, A.J. (1984). Structural relationships among genes that control 
development: sequence homology between the Antennapedia, Ultrabithorax, and fushi 
tarazu loci of Drosophila. Proc Natl Acad Sci U S A 81, 4115-4119. 
 



 105 

Shanmugam, K., Green, N.C., Rambaldi, I., Saragovi, H.U., and Featherstone, M.S. 
(1999). PBX and MEIS as non-DNA-binding partners in trimeric complexes with HOX 
proteins. Mol Cell Biol 19, 7577-7588. 
 
Shen, W.F., Montgomery, J.C., Rozenfeld, S., Moskow, J.J., Lawrence, H.J., Buchberg, 
A.M., and Largman, C. (1997). AbdB-like Hox proteins stabilize DNA binding by the 
Meis1 homeodomain proteins. Mol Cell Biol 17, 6448-6458. 
 
Shen, W.F., Rozenfeld, S., Kwong, A., Kom ves, L.G., Lawrence, H.J., and Largman, C. 
(1999). HOXA9 forms triple complexes with PBX2 and MEIS1 in myeloid cells. Mol 
Cell Biol 19, 3051-3061. 
 
Smith, J.E., Jr., Bollekens, J.A., Inghirami, G., and Takeshita, K. (1997). Cloning and 
mapping of the MEIS1 gene, the human homolog of a murine leukemogenic gene. 
Genomics 43, 99-103. 
 
Stedman, A., Lecaudey, V., Havis, E., Anselme, I., Wassef, M., Gilardi-Hebenstreit, P., 
and Schneider-Maunoury, S. (2009). A functional interaction between Irx and Meis 
patterns the anterior hindbrain and activates krox20 expression in rhombomere 3. Dev 
Biol 327, 566-577. 
 
Steelman, S., Moskow, J.J., Muzynski, K., North, C., Druck, T., Montgomery, J.C., 
Huebner, K., Daar, I.O., and Buchberg, A.M. (1997). Identification of a conserved family 
of Meis1-related homeobox genes. Genome Res 7, 142-156. 
 
Stuart, G.W., McMurray, J.V., and Westerfield, M. (1988). Replication, integration and 
stable germ-line transmission of foreign sequences injected into early zebrafish embryos. 
Development 103, 403-412. 
 
Sumiyama, K., Kawakami, K., and Yagita, K. (2010). A simple and highly efficient 
transgenesis method in mice with the Tol2 transposon system and cytoplasmic 
microinjection. Genomics 95, 306-311. 
 
Swift, G.H., Liu, Y., Rose, S.D., Bischof, L.J., Steelman, S., Buchberg, A.M., Wright, 
C.V., and MacDonald, R.J. (1998). An endocrine-exocrine switch in the activity of the 
pancreatic homeodomain protein PDX1 through formation of a trimeric complex with 
PBX1b and MRG1 (MEIS2). Mol Cell Biol 18, 5109-5120. 
 
Takahashi, K., Liu, F.C., Oishi, T., Mori, T., Higo, N., Hayashi, M., Hirokawa, K., and 
Takahashi, H. (2008). Expression of FOXP2 in the developing monkey forebrain: 
comparison with the expression of the genes FOXP1, PBX3, and MEIS2. J Comp Neurol 
509, 180-189. 
 
Taylor, J.S., and Raes, J. (2004). Duplication and divergence: the evolution of new genes 
and old ideas. Annu Rev Genet 38, 615-643. 
 



 106 

Thorsteinsdottir, U., Kroon, E., Jerome, L., Blasi, F., and Sauvageau, G. (2001). Defining 
roles for HOX and MEIS1 genes in induction of acute myeloid leukemia. Mol Cell Biol 
21, 224-234. 
 
Tolhuis, B., Palstra, R.J., Splinter, E., Grosveld, F., and de Laat, W. (2002). Looping and 
interaction between hypersensitive sites in the active beta-globin locus. Mol Cell 10, 
1453-1465. 
 
Toresson, H., Mata de Urquiza, A., Fagerstrom, C., Perlmann, T., and Campbell, K. 
(1999). Retinoids are produced by glia in the lateral ganglionic eminence and regulate 
striatal neuron differentiation. Development 126, 1317-1326. 
 
Toresson, H., Parmar, M., and Campbell, K. (2000). Expression of Meis and Pbx genes 
and their protein products in the developing telencephalon: implications for regional 
differentiation. Mech Dev 94, 183-187. 
 
Tumpel, S., Cambronero, F., Wiedemann, L.M., and Krumlauf, R. (2006). Evolution of 
cis elements in the differential expression of two Hoxa2 coparalogous genes in pufferfish 
(Takifugu rubripes). Proc Natl Acad Sci U S A 103, 5419-5424. 
 
Urasaki, A., Morvan, G., and Kawakami, K. (2006). Functional dissection of the Tol2 
transposable element identified the minimal cis-sequence and a highly repetitive 
sequence in the subterminal region essential for transposition. Genetics 174, 639-649. 
 
Vennemann, A., Agoston, Z., and Schulte, D. (2008). Differential and dose-dependent 
regulation of gene expression at the mid-hindbrain boundary by Ras-MAP kinase 
signaling. Brain Res 1206, 33-43. 
 
Vlachakis, N., Choe, S.K., and Sagerstrom, C.G. (2001). Meis3 synergizes with Pbx4 and 
Hoxb1b in promoting hindbrain fates in the zebrafish. Development 128, 1299-1312. 
 
Vlachakis, N., Ellstrom, D.R., and Sagerstrom, C.G. (2000). A novel pbx family member 
expressed during early zebrafish embryogenesis forms trimeric complexes with Meis3 
and Hoxb1b. Dev Dyn 217, 109-119. 
 
Wang, Y., Yin, L., and Hillgartner, F.B. (2001). The homeodomain proteins PBX and 
MEIS1 are accessory factors that enhance thyroid hormone regulation of the malic 
enzyme gene in hepatocytes. J Biol Chem 276, 23838-23848. 
 
Waskiewicz, A.J., Rikhof, H.A., Hernandez, R.E., and Moens, C.B. (2001). Zebrafish 
Meis functions to stabilize Pbx proteins and regulate hindbrain patterning. Development 
128, 4139-4151. 
 
 
 



 107 

Wassef, M.A., Chomette, D., Pouilhe, M., Stedman, A., Havis, E., Desmarquet-Trin 
Dinh, C., Schneider-Maunoury, S., Gilardi-Hebenstreit, P., Charnay, P., and Ghislain, J. 
(2008). Rostral hindbrain patterning involves the direct activation of a Krox20 
transcriptional enhancer by Hox/Pbx and Meis factors. Development 135, 3369-3378. 
 
Williams, T.M., Williams, M.E., and Innis, J.W. (2005). Range of HOX/TALE 
superclass associations and protein domain requirements for HOXA13:MEIS interaction. 
Dev Biol 277, 457-471. 
 
Wittkopp, P.J., Haerum, B.K., and Clark, A.G. (2004). Evolutionary changes in cis and 
trans gene regulation. Nature 430, 85-88. 
 
Woolfe, A., Goodson, M., Goode, D.K., Snell, P., McEwen, G.K., Vavouri, T., Smith, 
S.F., North, P., Callaway, H., Kelly, K., et al. (2005). Highly conserved non-coding 
sequences are associated with vertebrate development. PLoS Biol 3, e7. 
 
Xu, Q. (1999). Microinjection into zebrafish embryos. Methods Mol Biol 127, 125-132. 
 
Yang, X., Zhou, Y., Barcarse, E.A., and O'Gorman, S. (2008). Altered neuronal lineages 
in the facial ganglia of Hoxa2 mutant mice. Dev Biol 314, 171-188. 
 
Yang, Y., Hwang, C.K., D'Souza, U.M., Lee, S.H., Junn, E., and Mouradian, M.M. 
(2000). Three-amino acid extension loop homeodomain proteins Meis2 and TGIF 
differentially regulate transcription. J Biol Chem 275, 20734-20741. 
 
Zerucha, T., and Prince, V.E. (2001). Cloning and developmental expression of a 
zebrafish meis2 homeobox gene. Mech Dev 102, 247-250. 
 
Zerucha, T., Stuhmer, T., Hatch, G., Park, B.K., Long, Q., Yu, G., Gambarotta, A., 
Schultz, J.R., Rubenstein, J.L., and Ekker, M. (2000). A highly conserved enhancer in the 
Dlx5/Dlx6 intergenic region is the site of cross-regulatory interactions between Dlx genes 
in the embryonic forebrain. J Neurosci 20, 709-721. 
 
Zhang, X., Friedman, A., Heaney, S., Purcell, P., and Maas, R.L. (2002). Meis 
homeoproteins directly regulate Pax6 during vertebrate lens morphogenesis. Genes Dev 
16, 2097-2107. 
 
Zhang, X., Huang, C.T., Chen, J., Pankratz, M.T., Xi, J., Li, J., Yang, Y., Lavaute, T.M., 
Li, X.J., Ayala, M., et al. (2010). Pax6 is a human neuroectoderm cell fate determinant. 
Cell Stem Cell 7, 90-100. 
 
Zhang, X., Rowan, S., Yue, Y., Heaney, S., Pan, Y., Brendolan, A., Selleri, L., and Maas, 
R.L. (2006). Pax6 is regulated by Meis and Pbx homeoproteins during pancreatic 
development. Dev Biol 300, 748-757. 



 108 

BIOGRAPHICAL SKETCH 

 Kyle C. Nelson was born in Durham, NC on September 12, 1981.  He received 

his undergraduate degree in Biology from Appalachian State University in 2008, during 

which time he began working with his Thesis Advisor Dr. Ted Zerucha.  As an 

undergraduate he participated in a summer internship at the pharmaceutical company 

GlaxoSmithKline and was awarded the Sigma Xi award for Undergraduate Research.  

After graduation Kyle returned to Appalachian State University to continue his 

undergraduate project and pursue his Masters in Cell and Molecular Biology.  As a 

graduate student he served as the Biology Department representative to the Graduate 

Student Association Senate (GSAS) where he served as a Co-Treasurer.  Kyle received 

his degree in 2011 and is continuing his education at Wake Forest University where he 

will pursue his Ph.D. in Molecular and Cellular Biosciences. 


	1 Title Page Final
	2 Signature Page Final
	3 Copyright Final
	4 Forward Final
	5 Abstract Final
	6 Dedication Final
	7 Acknowledgements Final
	8 Table of Contentas Final
	9 List of Tables Final
	10 List of Figures Final
	Figure 9: Multiple Sequence Alignment of HCNE m2de4……...…………..………... p62

	11 Introduction Final
	12 Meis Lit Review Final
	13 Materialsnand Methods Final
	14 Results Final Finally 4
	15 Discussion
	16 Glossary Final
	17 References Final
	18 Bio Final

